Previous |  Up |  Next

Article

Title: Sets of determination for parabolic functions on a half-space (English)
Author: Ranošová, Jarmila
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 35
Issue: 3
Year: 1994
Pages: 497-513
.
Category: math
.
Summary: We characterize all subsets $M$ of $\Bbb R^n \times \Bbb R^+$ such that $$ \sup\limits_{X\in \Bbb R^n \times \Bbb R^+}u(X) = \sup\limits_{X\in M}u(X) $$ for every bounded parabolic function $u$ on $\Bbb R^n \times \Bbb R^+$. The closely related problem of representing functions as sums of Weierstrass kernels corresponding to points of $M$ is also considered. The results provide a parabolic counterpart to results for classical harmonic functions in a ball, see References. As a by-product the question of representability of probability continuous distributions as sums of multiples of normal distributions is investigated. (English)
Keyword: heat equation
Keyword: parabolic function
Keyword: Weierstrass kernel
Keyword: set of determination
Keyword: decomposition of $L_1(\Bbb R^n)$
Keyword: normal distribution
MSC: 31B10
MSC: 35C15
MSC: 35K05
MSC: 35K15
MSC: 60E99
idZBL: Zbl 0808.35043
idMR: MR1307276
.
Date available: 2009-01-08T18:12:45Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118689
.
Reference: [1] Aikawa H.: Sets of determination for harmonic function in an NTA domains.preprint, 1992. MR 1376083
Reference: [2] Bonsall F.F.: Decomposition of functions as sums of elementary functions.Quart J. Math. Oxford (2) 37 (1986), 129-136. MR 0841422
Reference: [3] Bonsall F.F.: Domination of the supremum of a bounded harmonic function by its supremum over a countable subset.Proc. Edinburgh Math. Soc. 30 (1987), 441-477. Zbl 0658.31001, MR 0908454
Reference: [4] Bonsall F.F.: Some dual aspects of the Poisson kernel.Proc. Edinburgh Math. Soc. 33 (1990), 207-232. Zbl 0704.31001, MR 1057750
Reference: [5] Doob J.L.: Classical Potential Theory and Its Probabilistic Counterpart.Springer-Verlag New York (1984). Zbl 0549.31001, MR 0731258
Reference: [6] Gardiner S.J.: Sets of determination for harmonic function.Trans. Amer. Math. Soc. 338 (1993), 233-243. MR 1100694
Reference: [7] Rudin W.: Functional Analysis.McGraw-Hill Book Company (1973). Zbl 0253.46001, MR 0365062
Reference: [8] Dudley Ward N.F.: Atomic Decompositions of Integrable or Continuous Functions.D.Phil Thesis, University of York, 1991.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_35-1994-3_7.pdf 251.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo