Previous |  Up |  Next


Lindelöf number; cellularity; cardinal invariants with respect to a subset
Cardinal functions for topological spaces in which a subset is selected in a certain way are defined and studied. Most of the main cardinal inequalities are generalized for such spaces.
[1] Archangel'skii A.V.: On the cardinality of bicompacta satisfying the first axiom of countability. Soviet Math. Dokl. 10 (1969), 951-955.
[2] Archangel'skii A.V.: A theorem about cardinality. Uspehi Matem. Nauk 34 (1979), 177-178. MR 0548421
[3] Archangel'skii A.V., M.M. Genedi Hamdi: The position of subspaces in a topological space: relative compactness, Lindelöfness and axioms of separation. Vestnik Moskovskogo Universiteta, ser I., vol. 6, 1989, 67-69.
[4] Bell M., Ginsburgh J., Woods G.: Cardinal inequalities for topological spaces involving the weak Lindelöf number. Pacific J. Math. 79 (1978), 37-45. MR 0526665
[5] Engelking R.: General Topology. Warszawa, 1976. Zbl 0684.54001
[6] Hajnal A., Juhasz I.: Discrete Subspaces of Topological Spaces I & II. Pc. Koninkl. Nederl. Akad. Wet., Ser. A, 70 (1967), 343-356; 72 (1969), 18-30. MR 0264585
[7] Juhasz I.: Cardinal Functions in Topology - Ten Years Later. Math. Centre Tracts 123, Amsterdam, 1980. MR 0576927 | Zbl 0479.54001
[8] Liu Xiao Shi: Two cardinal functions of topological spaces and improvements of some famous cardinal inequalities. Acta Math. Sinica 29 (1986), 494-497. MR 0867698
[9] Sun Shu-Hao: A note on Archangel'skii's inequality. J. Math. Soc. Japan 39 (1987), 363-365. MR 0900974
[10] Stavrova D.N.: A New Inequality for the Cardinality of topological Spaces. Proc. of the XX-th Conf. of the UBM, 1991.
Partner of
EuDML logo