Previous |  Up |  Next

Article

Title: An existence theorem for extended mildly nonlinear complementarity problem in semi-inner product spaces (English)
Author: Khan, M. S.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 36
Issue: 1
Year: 1995
Pages: 25-31
.
Category: math
.
Summary: We prove a result for the existence and uniqueness of the solution for a class of mildly nonlinear complementarity problem in a uniformly convex and strongly smooth Banach space equipped with a semi-inner product. We also get an extension of a nonlinear complementarity problem over an infinite dimensional space. Our last results deal with the existence of a solution of mildly nonlinear complementarity problem in a reflexive Banach space. (English)
Keyword: strongly smooth Banach space
Keyword: mildly nonlinear complementarity problem
MSC: 46N10
MSC: 47N10
MSC: 49A10
MSC: 49A29
MSC: 49J10
MSC: 49J40
MSC: 65K10
MSC: 90C33
idZBL: Zbl 0827.49004
idMR: MR1334411
.
Date available: 2009-01-08T18:15:47Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118729
.
Reference: [1] Bazaraa M.S., Goode J.J., Nashed M.Z.: A nonlinear complementarity problem in mathematical programming in Banach spaces.Proc. Amer. Math. Soc. 35 (1972), 165-170. MR 0300163
Reference: [2] Browder F.E.: Nonlinear monotone operators and convex sets in Banach spaces.Bull. Amer. Math. Soc. 71 (1965), 780-785. Zbl 0138.39902, MR 0180882
Reference: [3] Edelstein M.: On nearest points of sets in uniformly convex Banach spaces.J. London Math. Soc. 43 (1968), 375-377. Zbl 0183.40403, MR 0226364
Reference: [3] Edelstein M.: On fixed and periodic points under contractive mappings.J. London Math. Soc. 37 (1962), 74-79. Zbl 0113.16503, MR 0133102
Reference: [5] Giles J.R.: Classes of semi-inner product spaces.Trans. Amer. Math. Soc. 129 (1967), 436-446. Zbl 0157.20103, MR 0217574
Reference: [6] Lumer G.: Semi-inner product spaces.Trans. Amer. Math. Soc. 100 (1969), 29-43. MR 0133024
Reference: [7] Nanda S.: A non-linear complementarity problem in semi-inner product space.Rendiconti di Matematica 1 (1982), 167-171. MR 0663723
Reference: [8] Nanda S., Nanda S.: On stationary points and the complementarity problem.Bull. Austral. Math. Soc. 21 (1980), 351-356. MR 0585193
Reference: [9] Nath B., Lal S.N., Mukerjee R.N.: A generalized non-linear complementarity problem in semi-inner product space.Indian J. Pure Appl. Math. 21:2 (1990), 140-143. MR 1041934
Reference: [10] Noor M.A.: On the non-linear complementarity problem.J. Math. Anal. Appl. 123 (1987), 455-460.
Reference: [11] Noor M.A.: Mildly non-linear variational inequalities.Math. Anal. Numer. Theory Approx. 24 (1982), 99-110. MR 0692191
Reference: [12] Noor M.A.: Generalized quasi complementarity problems.J. Math. Anal. Appl. 120 (1986), 321-327.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_36-1995-1_6.pdf 178.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo