Previous |  Up |  Next

Article

Title: The C$^1$ stability of slow manifolds for a system of singularly perturbed evolution equations (English)
Author: Ševčovič, Daniel
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 36
Issue: 1
Year: 1995
Pages: 89-107
.
Category: math
.
Summary: In this paper we investigate the singular limiting behavior of slow invariant manifolds for a system of singularly perturbed evolution equations in Banach spaces. The aim is to prove the C$^{1}$ stability of invariant manifolds with respect to small values of the singular parameter. (English)
Keyword: singularly perturbed evolution equations
Keyword: C$^1$ stability of inertial manifolds
MSC: 34D45
MSC: 34E15
MSC: 34G20
MSC: 35B25
MSC: 35B40
MSC: 35C30
MSC: 35K55
MSC: 35L15
MSC: 47H20
idZBL: Zbl 0821.35011
idMR: MR1334417
.
Date available: 2009-01-08T18:16:14Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118735
.
Reference: [1] Chow S.-N., Lu K.: Invariant manifolds for flows in Banach spaces.J. of Differential Equations 74 (1988), 285-317. Zbl 0691.58034, MR 0952900
Reference: [2] Foias C., Sell G.R., Temam R.: Inertial manifolds for nonlinear evolutionary equations.J. of Differential Equations 73 (1988), 309-353. Zbl 0643.58004, MR 0943945
Reference: [3] Henry D.: Geometric theory of semilinear parabolic equations.Lecture Notes in Math. 840, Springer Verlag, 1981. Zbl 0663.35001, MR 0610244
Reference: [4] Marion M.: Inertial manifolds associated to partly dissipative reaction - diffusion systems.J. of Math. Anal. Appl. 143 (1989), 295-326. Zbl 0689.58039, MR 1022538
Reference: [5] Miklavčič M.: A sharp condition for existence of an inertial manifold.J. of Dynamics and Differential Equations 3 (1991), 437-457. MR 1118343
Reference: [6] Mora X., Solà-Morales J.: The singular limit dynamics of semilinear damped wave equation.J. of Differential Equations 78 (1989), 262-307. MR 0992148
Reference: [7] Richards J.: On the gaps between numbers which are the sum of two squares.Adv. Math. 46 (1982), 1-2. MR 0676985
Reference: [8] Ševčovič D.: Limiting behaviour of invariant manifolds for a system of singularly perturbed evolution equations.Math. Methods in the Appl. Sci. 17 (1994), 643-666. MR 1280649
Reference: [9] Ševčovič D.: Limiting behavior of global attractors for singularly perturbed beam equations with strong damping.Comment. Math. Univ. Carolinae 32 (1991), 45-60. MR 1118289
Reference: [10] Sviridyuk G.A.: The Deborah number and a class of semilinear equations of Sobolev type (English translation).Soviet. Math. Doklady 44 No.1 (1992), 297-301. MR 1152892
Reference: [11] Sviridyuk G.A., Sukacheva T.G.: Cauchy problem for a class of semilinear equations of Sobolev type (English translation).Sibirskii Matem. Zhurnal 31 No.5 (1990), 120-127. MR 1088921
Reference: [12] Vanderbauwhede A., Van Gils V.A.: Center manifolds and contraction on a scale of Banach spaces.J. of Funct. Analysis 72 (1987), 209-224. MR 0886811
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_36-1995-1_12.pdf 303.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo