Title: | A primrose path from Krull to Zorn (English) |

Author: | Erné, Marcel |

Language: | English |

Journal: | Commentationes Mathematicae Universitatis Carolinae |

ISSN: | 0010-2628 (print) |

ISSN: | 1213-7243 (online) |

Volume: | 36 |

Issue: | 1 |

Year: | 1995 |

Pages: | 123-126 |

. | |

Category: | math |

. | |

Summary: | \font\jeden=rsfs10 \font\dva=rsfs8 \font\tri=rsfs6 \font\ctyri=rsfs7 Given a set $X$ of ``indeterminates'' and a field $F$, an ideal in the polynomial ring $R=F[X]$ is called conservative if it contains with any polynomial all of its monomials. The map $S\mapsto RS$ yields an isomorphism between the power set $\text{\dva P}\,(X)$ and the complete lattice of all conservative prime ideals of $R$. Moreover, the members of any system $\text{\dva S}\,\subseteq \text{\dva P}\,(X)$ of finite character are in one-to-one correspondence with the conservative prime ideals contained in $P_{\text{\ctyri S}}=\bigcup \{RS:S\in \text{\dva S}\,\}$, and the maximal members of $\text{\dva S}\,$ correspond to the maximal ideals contained in $P_{\text{\ctyri S}}\,$. This establishes, in a straightforward way, a ``local version'' of the known fact that the Axiom of Choice is equivalent to the existence of maximal ideals in non-trivial (unique factorization) rings. (English) |

Keyword: | polynomial ring |

Keyword: | conservative |

Keyword: | prime ideal |

Keyword: | system of finite character |

Keyword: | Axiom of Choice |

MSC: | 03E25 |

MSC: | 04A25 |

MSC: | 13A15 |

MSC: | 13B25 |

MSC: | 13B30 |

MSC: | 13F20 |

idZBL: | Zbl 0827.03028 |

idMR: | MR1334420 |

. | |

Date available: | 2009-01-08T18:16:31Z |

Last updated: | 2012-04-30 |

Stable URL: | http://hdl.handle.net/10338.dmlcz/118738 |

. | |

Reference: | [1] Banaschewski B.: A new proof that ``Krull implies Zorn''.preprint, McMaster University, Hamilton, 1993. Zbl 0813.03032, MR 1301940 |

Reference: | [2] Banaschewski B., Erné M.: On Krull's separation lemma.Order 10 (1993), 253-260. Zbl 0795.06005, MR 1267191 |

Reference: | [3] Hodges W.: Krull implies Zorn.J. London Math. Soc. 19 (1979), 285-287. Zbl 0394.03045, MR 0533327 |

Reference: | [4] Kaplansky I.: Commutative Rings.The University of Chicago Press, Chicago, 1974. Zbl 0296.13001, MR 0345945 |

Reference: | [5] Rosenthal K.: Quantales and Their Applications.Pitman Research Notes in Mathematics Series 234, Longman Scientific and Technical, Essex, 1990. Zbl 0703.06007, MR 1088258 |

Reference: | [6] Rubin H., Rubin J.E.: Equivalents of the Axiom of Choice, II.North-Holland, Amsterdam-New York-Oxford, 1985. MR 0798475 |

. |

Files | Size | Format | View |
---|---|---|---|

CommentatMathUnivCarolRetro_36-1995-1_15.pdf | 176.0Kb | application/pdf |
View/ |