Title:
|
Whitney blocks in the hyperspace of a finite graph (English) |
Author:
|
Illanes, Alejandro |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
36 |
Issue:
|
1 |
Year:
|
1995 |
Pages:
|
137-147 |
. |
Category:
|
math |
. |
Summary:
|
Let $X$ be a finite graph. Let $C(X)$ be the hyperspace of all nonempty subcontinua of $X$ and let $\mu :C(X)\rightarrow \Bbb R$ be a Whitney map. We prove that there exist numbers $0<T_0<T_1<T_2<\dots <T_M=\mu (X)$ such that if $T\in (T_{i-1},T_i)$, then the Whitney block $\mu ^{-1} (T_{i-1},T_i)$ is homeomorphic to the product $\mu ^{-1}(T)\times (T_{i-1},T_i)$. We also show that there exists only a finite number of topologically different Whitney levels for $C(X)$. (English) |
Keyword:
|
hyperspaces |
Keyword:
|
Whitney levels |
Keyword:
|
Whitney blocks |
Keyword:
|
finite graphs |
MSC:
|
05C10 |
MSC:
|
52B99 |
MSC:
|
54B20 |
idZBL:
|
Zbl 0833.54009 |
idMR:
|
MR1334422 |
. |
Date available:
|
2009-01-08T18:16:39Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/118740 |
. |
Reference:
|
[1] Duda R.: On the hyperspace of subcontinua of a finite graph.Fund. Math. 62 (1968), 265-286. Zbl 0179.28101, MR 0236881 |
Reference:
|
[2] Duda R.: On the hyperspace of subcontinua of a finite graph.Fund. Math. 63 (1968), 225-255. Zbl 0179.28101, MR 0236882 |
Reference:
|
[3] Duda R.: Correction to the paper ``On the hyperspace of subcontinua of a finite graph I.Fund. Math. 69 (1970), 207-211. MR 0273575 |
Reference:
|
[4] Kato H.: Whitney continua of curves.Trans. Amer. Math. Soc. 300 (1987), 367-381. Zbl 0621.54006, MR 0871681 |
Reference:
|
[5] Kato H.: Whitney continua of graphs admit all homotopy types of compact connected ANRs.Fund. Math 129 (1988), 161-166. Zbl 0652.55013, MR 0962537 |
Reference:
|
[6] Kato H.: A note on fundamental dimensions of Whitney continua of graphs.J. Math. Soc. Japan 41 (1989), 243-250. Zbl 0651.54002, MR 0984749 |
Reference:
|
[7] Montejano-Peimbert L., Puga-Espinosa I.: Shore points in dendroids and conical pointed hyperspaces.to appear in Top. Appl. Zbl 0789.54010, MR 1177162 |
Reference:
|
[8] Nadler S.B., Jr.: Hyperspaces of sets.Marcel Dekker, New York, Basel, 1978. Zbl 1125.54001, MR 0500811 |
Reference:
|
[9] Nadler S.B., Jr.: Continua whose hyperspace is a product.Fund. Math. 108 (1980), 49-66. Zbl 0456.54023, MR 0585559 |
Reference:
|
[10] Puga-Espinosa I.: Hiperespacios con punta de cono.Tesis doctoral, Facultad de Ciencias, Universidad Nacional Autónoma de México, 1989. |
. |