Previous |  Up |  Next

Article

Title: Whitney blocks in the hyperspace of a finite graph (English)
Author: Illanes, Alejandro
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 36
Issue: 1
Year: 1995
Pages: 137-147
.
Category: math
.
Summary: Let $X$ be a finite graph. Let $C(X)$ be the hyperspace of all nonempty subcontinua of $X$ and let $\mu :C(X)\rightarrow \Bbb R$ be a Whitney map. We prove that there exist numbers $0<T_0<T_1<T_2<\dots <T_M=\mu (X)$ such that if $T\in (T_{i-1},T_i)$, then the Whitney block $\mu ^{-1} (T_{i-1},T_i)$ is homeomorphic to the product $\mu ^{-1}(T)\times (T_{i-1},T_i)$. We also show that there exists only a finite number of topologically different Whitney levels for $C(X)$. (English)
Keyword: hyperspaces
Keyword: Whitney levels
Keyword: Whitney blocks
Keyword: finite graphs
MSC: 05C10
MSC: 52B99
MSC: 54B20
idZBL: Zbl 0833.54009
idMR: MR1334422
.
Date available: 2009-01-08T18:16:39Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118740
.
Reference: [1] Duda R.: On the hyperspace of subcontinua of a finite graph.Fund. Math. 62 (1968), 265-286. Zbl 0179.28101, MR 0236881
Reference: [2] Duda R.: On the hyperspace of subcontinua of a finite graph.Fund. Math. 63 (1968), 225-255. Zbl 0179.28101, MR 0236882
Reference: [3] Duda R.: Correction to the paper ``On the hyperspace of subcontinua of a finite graph I.Fund. Math. 69 (1970), 207-211. MR 0273575
Reference: [4] Kato H.: Whitney continua of curves.Trans. Amer. Math. Soc. 300 (1987), 367-381. Zbl 0621.54006, MR 0871681
Reference: [5] Kato H.: Whitney continua of graphs admit all homotopy types of compact connected ANRs.Fund. Math 129 (1988), 161-166. Zbl 0652.55013, MR 0962537
Reference: [6] Kato H.: A note on fundamental dimensions of Whitney continua of graphs.J. Math. Soc. Japan 41 (1989), 243-250. Zbl 0651.54002, MR 0984749
Reference: [7] Montejano-Peimbert L., Puga-Espinosa I.: Shore points in dendroids and conical pointed hyperspaces.to appear in Top. Appl. Zbl 0789.54010, MR 1177162
Reference: [8] Nadler S.B., Jr.: Hyperspaces of sets.Marcel Dekker, New York, Basel, 1978. Zbl 1125.54001, MR 0500811
Reference: [9] Nadler S.B., Jr.: Continua whose hyperspace is a product.Fund. Math. 108 (1980), 49-66. Zbl 0456.54023, MR 0585559
Reference: [10] Puga-Espinosa I.: Hiperespacios con punta de cono.Tesis doctoral, Facultad de Ciencias, Universidad Nacional Autónoma de México, 1989.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_36-1995-1_17.pdf 238.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo