Previous |  Up |  Next

Article

Title: A note on intersection dimensions of graph classes (English)
Author: Hliněný, Petr
Author: Kuběna, Aleš
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 36
Issue: 2
Year: 1995
Pages: 255-261
.
Category: math
.
Summary: The intersection dimension of a graph $G$ with respect to a class $\Cal A$ of graphs is the minimum $k$ such that $G$ is the intersection of some $k$ graphs on the vertex set $V(G)$ belonging to $\Cal A$. In this paper we follow [\,Kratochv'\i l J., Tuza Z.: {\sl Intersection dimensions of graph classes\/}, Graphs and Combinatorics 10 (1994), 159--168\,] and show that for some pairs of graph classes $\Cal A$, $\Cal B$ the intersection dimension of graphs from $\Cal B$ with respect to $\Cal A$ is unbounded. (English)
Keyword: intersection graph
Keyword: intersection dimension
MSC: 05C10
MSC: 05C30
MSC: 05C70
MSC: 05C75
idZBL: Zbl 0838.05042
idMR: MR1357527
.
Date available: 2009-01-08T18:17:44Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118754
.
Reference: [1] Cozzens M.B., Roberts F.S.: Computing the boxicity of a graph by covering its complement by cointerval graphs.Discrete Appl. Math. 6 (1983), 217-228. Zbl 0524.05059, MR 0712922
Reference: [2] Cozzens M.B., Roberts F.S.: On dimensional properties of graphs.Graphs and Combinatorics 5 (1989), 29-46. Zbl 0675.05054, MR 0981229
Reference: [3] Feinberg R.B.: The circular dimension of a graph.Discrete Math. 25 (1979), 27-31. Zbl 0392.05057, MR 0522744
Reference: [4] Golumbic M.C.: Algorithmic Graph Theory and Perfect Graphs.Academic Press, New York, 1980. Zbl 1050.05002, MR 0562306
Reference: [5] Goodman J.E., Pollack R.: Upper bounds for configurations and polytopes in $R^d$.Discrete Computational Geometry 1 (1986), 219-227. MR 0861891
Reference: [6] Janson S., Kratochvíl J.: Thresholds for classes of intersection graphs.Discrete Math. 108 (1992), 307-326. MR 1189853
Reference: [7] Kratochvíl J., Matoušek J.: Intersection graphs of segments.J. Combin. Theory Ser. B 62 (1994), 289-315. MR 1305055
Reference: [8] Kratochvíl J., Tuza Z.: Intersection dimensions of graph classes.Graphs and Combinatorics 10 (1994), 159-168. MR 1289974
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_36-1995-2_6.pdf 207.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo