Previous |  Up |  Next

Article

Title: An existence theorem of positive solutions to a singular nonlinear boundary value problem (English)
Author: Bonanno, Gabriele
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 36
Issue: 4
Year: 1995
Pages: 609-614
.
Category: math
.
Summary: In this note we consider the boundary value problem $y''=f(x,y,y')$ $\,(x\in [0,X];X>0)$, $y(0)=0$, $y(X)=a>0$; where $f$ is a real function which may be singular at $y=0$. We prove an existence theorem of positive solutions to the previous problem, under different hypotheses of Theorem 2 of L.E. Bobisud [J. Math. Anal. Appl. 173 (1993), 69–83], that extends and improves Theorem 3.2 of D. O'Regan [J. Differential Equations 84 (1990), 228–251]. (English)
Keyword: ordinary differential equations
Keyword: singular boundary value problem
Keyword: positive solutions
MSC: 34B15
idZBL: Zbl 0847.34020
idMR: MR1378684
.
Date available: 2009-01-08T18:20:31Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118790
.
Reference: [1] Arino O., Gautier S., Penot J.P.: A fixed point theorem for sequentially continuous mappings with application to ordinary differential equations.Funkcial. Ekv. 27 (1984), 273-279. Zbl 0599.34008, MR 0794756
Reference: [2] Bobisud L.E.: Existence of positive solutions to some nonlinear singular boundary value problems on finite and infinite intervals.J. Math. Anal. Appl. 173 (1993), 69-83. Zbl 0777.34017, MR 1205910
Reference: [3] Diestel J., Uhl J.J.: Vector Measures.Math. Survey, no. 15, Amer. Soc., 1977. Zbl 0521.46035, MR 0453964
Reference: [4] O'Regan D.: Existence of positive solutions to some singular and nonsingular second order boundary value problems.J. Differential Equations 84 (1990), 228-251. Zbl 0706.34030, MR 1047568
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_36-1995-4_1.pdf 186.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo