Previous |  Up |  Next


Title: Applications of the spectral radius to some integral equations (English)
Author: Zima, Mirosława
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 36
Issue: 4
Year: 1995
Pages: 695-703
Category: math
Summary: In the paper [13] we proved a fixed point theorem for an operator $\Cal A$, which satisfies a generalized Lipschitz condition with respect to a linear bounded operator $A$, that is: $$ m(\Cal A x-\Cal A y)\prec Am(x-y). $$ The purpose of this paper is to show that the results obtained in [13], [14] can be extended to a nonlinear operator $A$. (English)
Keyword: fixed point theorem
Keyword: spectral radius
Keyword: integral-functional equation
MSC: 34K10
MSC: 45G10
MSC: 47G10
MSC: 47H07
MSC: 47H10
MSC: 47J10
idZBL: Zbl 0845.47047
idMR: MR1378690
Date available: 2009-01-08T18:21:00Z
Last updated: 2012-04-30
Stable URL:
Reference: [1] Bainov D.D., Mishev D.P.: Oscillation theory for neutral differential equations with delay.Adam Hilger, Bristol Philadelphia New York, 1991. Zbl 0747.34037, MR 1147908
Reference: [2] Förster K.-H., Nagy B.: On the local spectral radius of a nonnegative element with respect to an irreducible operator.Acta Sci. Math. 55 (1991), 155-166. MR 1124954
Reference: [3] Hristova S.G., Bainov D.D.: Monotone-iterative techniques of V. Lakshmikantham for a boundary value problem for systems of impulsive differential equations with ``supremum''.J. Math. Anal. Appl. 172 (1993), 339-352. Zbl 0772.34047, MR 1200990
Reference: [4] Krasnoselski M.A. et al.: Näherungsverfahren zur Lösung von Operatorgleichungen.Akademie Verlag, Berlin, 1973. Zbl 0269.65001
Reference: [5] Kwapisz M.: On the existence and uniqueness of solutions of a certain integral-functional equation.Ann. Polon. Math. 31 (1975), 23-41. MR 0380329
Reference: [6] Myshkis A.D.: On some problems of the theory of differential equations with deviating argument (in Russian).Uspehi Mat. Nauk 32 (1977), 173-202. MR 0492443
Reference: [7] Riesz F., Sz.-Nagy B.: Functional analysis.Ungar, New York, 1955. Zbl 0732.47001, MR 0071727
Reference: [8] Waẓewski T.: Sur un procédé de prouver la convergence des approximations successives sans utilisation des séries de comparaison.Bull. Acad. Polon. Sci. 1 (1960), 45-52. MR 0126109
Reference: [9] Zabrejko P.P.: The contraction mapping principle in $K$-metric and locally convex spaces (in Russian).Dokl. Akad. Nauk BSSR 34 (1990), 1065-1068. MR 1095667
Reference: [10] Zabrejko P.P., Krasnoselski M.A., Stecenko V.Ya.: On estimations of the spectral radius of the linear positive operators (in Russian).Mat. Zametki 1 (1967), 461-470. MR 0208390
Reference: [11] Zabrejko P.P., Makarevich T.A.: On some generalization of the Banach-Caccioppoli principle to operators in pseudometric spaces (in Russian).Diff. Uravn. 23 (1987), 1497-1504. MR 0911361
Reference: [12] Zeidler E.: Nonlinear functional analysis and its applications I.Springer Verlag, New York Heidelberg Berlin, 1993. Zbl 0583.47050, MR 0816732
Reference: [13] Zima M.: A certain fixed point theorem and its applications to integral-functional equations.Bull. Austral. Math. Soc. 46 (1992), 179-186. Zbl 0761.34048, MR 1183775
Reference: [14] Zima M.: A theorem on the spectral radius of the sum of two operators and its application.Bull. Austral. Math. Soc. 48 (1993), 427-434. Zbl 0795.34069, MR 1248046


Files Size Format View
CommentatMathUnivCarolRetro_36-1995-4_7.pdf 201.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo