Previous |  Up |  Next

Article

Title: Set valued measures and integral representation (English)
Author: Xue, Xiaoping
Author: Lixin, Cheng
Author: Li, Goucheng
Author: Yao, Xiaobo
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 37
Issue: 2
Year: 1996
Pages: 269-284
.
Category: math
.
Summary: The extension theorem of bounded, weakly compact, convex set valued and weakly countably additive measures is established through a discussion of convexity, compactness and existence of selection of the set valued measures; meanwhile, a characterization is obtained for continuous, weakly compact and convex set valued measures which can be represented by Pettis-Aumann-type integral. (English)
Keyword: set valued functions
Keyword: set valued measures
Keyword: Pettis-Aumann integral
MSC: 28A45
MSC: 28B20
MSC: 46G10
idZBL: Zbl 0885.28008
idMR: MR1399002
.
Date available: 2009-01-08T18:23:36Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118832
.
Reference: [1] Aumann R.: Integrals of set-valued functions.J. Math. Appl. Anal. 12 (1965), 1-12. Zbl 0163.06301, MR 0185073
Reference: [2] Artstein Z.: Set-valued measures.Trans. Amer. Math. Soc. 165 (1972), 103-125. Zbl 0237.28008, MR 0293054
Reference: [3] Amir D., Lindenstrauss J.: The structure of weakly compact sets in Banach spaces.Ann. Math. 88 (1968), 35-46. Zbl 0164.14903, MR 0228983
Reference: [4] Castaing C., Valadier M.: Convex Analysis and Measurable Multifunctions.Lecture Notes in Math. 580, Springer-Verlag, 1977. Zbl 0346.46038, MR 0467310
Reference: [5] Diestel J., Uhl J.: Vector Measures.Amer. Math. Soc., no. 15, 1977. Zbl 0521.46035, MR 0453964
Reference: [6] Hiai F., Umegaki H.: Integrals, conditional expectations and martingales of multivalued functions.J. Multivariate Anal. 7 (1977), 149-182. Zbl 0368.60006, MR 0507504
Reference: [7] Hiai F.: Radon-Nikodym theorems for set-valued measures.J. Multivariate Anal. 8 (1978), 96-118. Zbl 0384.28006, MR 0583862
Reference: [8] Ionescu-Tulcea A., Ionescu-Tulcea C.: Topics in the Theory of Lifting.Springer-Verlag, Berlin, 1969. Zbl 0179.46303
Reference: [9] Papageorgiou N.: On the theory of Banach space valued multifunctions.J. Multivariate Anal. 17 (1985), 185-227. Zbl 0579.28010, MR 0808276
Reference: [10] Papageorgiou N.: Representation of set-valued operators.Trans. Amer. Math. Soc. 292 (1985), 557-572. Zbl 0605.46037, MR 0808737
Reference: [11] Papageorgiou N.: Contributions to the theory of set-valued functions and set-valued measures.Trans. Amer. Math. Soc. 304 (1987), 245-265. Zbl 0634.28004, MR 0906815
Reference: [12] Uhl J.: The range of vector-valued measure.Proc. Amer. Math. Soc 23 (1969), 158-163. MR 0264029
Reference: [13] Wilansky A.: Modern Methods in Topological Vector Spaces.McGraw-Hill Inc., 1978. Zbl 0395.46001, MR 0518316
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_37-1996-2_7.pdf 278.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo