Previous |  Up |  Next

Article

Title: Some remarks to the compactness of steady compressible isentropic Navier-Stokes equations via the decomposition method (English)
Author: Novotný, Antonín
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 37
Issue: 2
Year: 1996
Pages: 305-342
.
Category: math
.
Summary: In [18]–[19], P.L. Lions studied (among others) the compactness and regularity of weak solutions to steady compressible Navier-Stokes equations in the isentropic regime with arbitrary large external data, in particular, in bounded domains. Here we investigate the same problem, combining his ideas with the method of decomposition proposed by Padula and myself in [29]. We find the compactness of the incompressible part $u$ of the velocity field $v$ and we give a new proof of the compactness of the ``effective pressure'' ${\Cal P} = \rho ^\gamma - (2\mu _1 +\mu _2) \operatorname{div} v$. We derive some new estimates of these quantities in Hardy and Triebel-Lizorkin spaces. (English)
Keyword: steady compressible Navier-Stokes equations
Keyword: Poisson-Stokes equations
Keyword: weak solutions
Keyword: global existence of weak solutions
Keyword: div-curl lemma
Keyword: Hardy spaces
Keyword: Triebel-Lizorkin spaces
MSC: 35Q30
MSC: 76N10
idZBL: Zbl 0852.76077
idMR: MR1399004
.
Date available: 2009-01-08T18:23:45Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118834
.
Reference: [1] Adams R.A.: Sobolev spaces.Academic Press, 1975. MR 0450957
Reference: [2] Beirao da Veiga H.: An $L^p$-theory for the $n$-dimensional stationary compressible Navier- Stokes equations and the incompressible limit for compressible fluids. The equilibrium solutions.Comm. Math. Phys. 109 (1987), 229-248. MR 0880415
Reference: [3] Bogovskij M.E.: Solutions of some problems of vector analysis with the operators div and grad.Trudy Sem. S.L. Soboleva (1980), 5-41.
Reference: [4] Cattabriga L.: Su un problema al contorno relativo al sistema di equazioni di Stokes.Rend. Sem. Mat. Univ. Padova 31 (1961), 308-340. Zbl 0116.18002, MR 0138894
Reference: [5] Coifman R., Lions P.L., Meyer Y., Semmes S.: Compensated compactness and Hardy spaces.J. Math. Pures Appl. 72 (1993), 247-286. Zbl 0864.42009, MR 1225511
Reference: [6] Di Perna R.J., Lions P.L.: Ordinary differential equations, transport theory and Sobolev spaces.Invent. Math. 98 (1989), 511-547. MR 1022305
Reference: [7] Farwig R.: Stationary solutions of the Navier-Stokes equations for a compressible viscous and heat-conductive fluid.preprint, Univ. Bonn, 1988.
Reference: [8] Farwig R.: Stationary solutions of the Navier-Stokes equations with slip boundary conditions.Comm. Part. Diff. Eqs. 14 (1989), 1579-1606. MR 1026775
Reference: [9] Galdi G.P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations.Vol. I, Springer, 1994. Zbl 0949.35005, MR 1284205
Reference: [10] Galdi G.P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations.Vol. II, Springer, 1994. Zbl 0949.35005, MR 1284206
Reference: [11] Galdi G.P., Novotný A., Padula M.: About steady compressible flows in 2D exterior domains.Pacif. Journal Math., in press.
Reference: [12] Grubb G., Kokholm N.J: Parameter dependent pseudodifferential boundary value problems in anisotropic $L^p$ Sobolev spaces with applications to Navier-Stokes problem.Acta. Math., in press.
Reference: [13] Grubb G.: Pseudodifferential boundary value problems in $L^p$-spaces.Comm. Part. Diff. Eq. 15 (1990), 289-340.
Reference: [14] Johnsen J.E.: The stationary Navier-Stokes equations in $L^p$-spaces.Ph.D. Theses, Math. Inst. Copenhagen, 1993.
Reference: [15] Kufner A., Fučík S., John O.: Function Spaces.Academia, Prague, 1977. MR 0482102
Reference: [16] Leray J.: Etudes de diverses équations intégrales non linéaires et de quelques problèmes que pose l'hydrodynamique.J. Math. Pures Appl. 12 (1933), 1-82.
Reference: [17] Leray J.: Sur le mouvement d'une liquide visqueux emplisant l'espace.Acta Math. 63 (1934), 193-248. MR 1555394
Reference: [18] Lions P.L.: Compacité des solutions des équations de Navier-Stokes compressibles isentropiques.C.R. Acad. Sci. Paris 317 (Serie I) (1993), 115-120. Zbl 0781.76072, MR 1228976
Reference: [19] Lions P.L.: Existence globale de solutions pour les équations de Navier-Stokes compressibles isentropiques.C.R. Acad. Sci. Paris 316 (Serie I) (1993), 1335-1340. Zbl 0778.76086, MR 1226126
Reference: [20] Lions P.L.: Private communication..
Reference: [21] Lions J.L.: Quelques méthodes de resolution des problemes aux limites nonlinéaires.Mir, 1972 (in Russian), French original: Dunod, 1969.
Reference: [22] Matsumura A., Nishida T.: Exterior stationary problems for the equations of motion of compressible viscous and heat-conductive fluids.Proc. EQUADIFF 89, eds. Dafermos C.M., Ladas G., Papanicolau G., Dekker publ., 1989, pp. 473-479. Zbl 0679.76076, MR 1021749
Reference: [23] Matsumura A., Nishida T.: Exterior stationary problems for the equations of motion of compressible viscous and heat-conductive fluids.manuscript in Japanese. Zbl 0679.76076
Reference: [24] Matsumura A., Nishida T.: Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids.Comm. Math. Phys. 89 (1983), 445-464. Zbl 0543.76099, MR 0713680
Reference: [25] Novotný A.: Steady flows of viscous compressible fluids - $L^2$-approach.Proc. of EQUAM 92, eds. Salvi, Straskraba (1993) Stab. Appl. Anal. Cont. Media 3.3 (1993), 181-199. MR 1245633
Reference: [26] Novotný A.: Steady flows of viscous compressible fluids in exterior domains under small perturbations of great potential forces.Math. Model. Meth. Appl. Sci. 3.6 (1993), 725-757. MR 1245633
Reference: [27] Novotný A.: Compactness of steady compressible isentropic Navier-Stokes equations via the decomposition method (the whole $\Bbb R^3$).Proc. Symposium Navier-Stokes equations. Theory, numerical analysis and applications, Oberwolfach 1994, eds. Heywood J., Masuda K., Rautmann R., Solonnikov V.A., in press.
Reference: [28] Nazarov S., Novotný A., Pileckas K.: On steady compressible Navier-Stokes equations in plane domains with corners.Math. Annalen 304.1 (1996), 121-150. MR 1367886
Reference: [29] Novotný A., Padula M.: $L^p$-approach to steady flows of viscous compressible fluids in exterior domains.preprint, Univ. Ferrara, 1992; Arch. Rat. Mech. Anal. 126 (1994), 243-297. MR 1293786
Reference: [30] Novotný A., Padula M.: Physically reasonable solutions to steady compressible Navier- Stokes equations in 3D-exterior domains II $(v_\infty = 0)$.J. Math. Kyoto Univ., in press.
Reference: [31] Novotný A., Padula M.: Physically reasonable solutions to steady compressible Navier- Stokes equations in 3D-exterior domains I $(v_\infty \neq 0)$.preprint, Univ. Toulon, 1994. MR 1293786
Reference: [32] Novotný A., Padula M.: On the decay at infinity of steady flow of viscous gas in an exterior domain I $(v_\infty = 0)$.preprint, Univ. Toulon, 1994.
Reference: [33] Novotný A., Padula M.: Existence and uniqueness of stationary solutions for viscous compressible heat-conductive fluid with large potential and small nonpotential external forces.Sib. Math. J. 34 (1991), 120-146. MR 1255466
Reference: [34] Novotný A., Padula M., Penel P.: A remark on the well possedness of the problem of a steady flow of a viscous barotropic gas in a pipe.Comm. Part. Diff. Eq. 21.1-2 (1996), 23-35. MR 1373763
Reference: [35] Novotný A., Penel P.: $L^p$-approach for steady flows of viscous compressible heat conductive gas.$M^3AS$, in press.
Reference: [36] Novotný A., Penel P.: About the incompressible limit of steady compressible Navier-Stokes equations in exterior domains.preprint, Univ. Toulon, 1995.
Reference: [37] Padula M.: On the uniqueness of viscous compressible flows.Proc. IV. Symposium - Trends in Applications of Pure Mathematics to Mechanics, editor Brilla E., Pitman, 1981.
Reference: [38] Padula M.: Existence and uniqueness for viscous steady compressible motions.Proc. Sem. Fis. Mat., Trieste, Dinamica dei fluidi e dei gaz ionizzati, 1982. Zbl 0644.76086
Reference: [39] Padula M.: Existence and uniqueness for viscous steady compressible motions.Arch. Rat. Mech. Anal. 77 (1987), 89-102. Zbl 0644.76086, MR 0860302
Reference: [40] Padula M.: A representation formula for steady solutions of a compressible fluid moving at low speed.Transp. Th. Stat. Phys. 21 593-613. MR 1194463
Reference: [41] Padula M.: On the exterior steady problem for the equations of a viscous isothermal gas.Proc. EVEQ 92, Prague, eds. John O., Stará J., Comm. Math. Univ. Carolinae 34 (1993), 275-293. Zbl 0778.76087, MR 1241737
Reference: [42] Padula M.: Existence of global solutions for 2-dimensional viscous compressible flow.J. Funct. Anal. 69 (1986), 1-20. MR 0864756
Reference: [43] Padula M.: Erratum.J. Funct. Anal. 76 (1988), 231. Zbl 0641.76015, MR 0923054
Reference: [44] Padula M.: Erratum.J. Funct. Anal. 77 (1988), 232. Zbl 0641.76015, MR 0930400
Reference: [45] Padula M., Pileckas K.: Steady flows of viscous ideal gas in domains with noncompact boundaries: existence and asymptotic behaviour in a pipe.to appear.
Reference: [46] Pileckas K., Zajaczkowski W.M.: On the free boundary problem for stationary compressible Navier-Stokes equations.Comm. Math. Phys. 129 (1990), 169-204. MR 1046283
Reference: [47] Solonnikov V.A.: About the solvability of the initial boundary value problem for the viscous compressible fluid (in Russian)..
Reference: [48] Solonnikov V.A., Tani A.: Free boundary value problem for a viscous compressible flow with the surface tension.An Int. Tribute, World Sci. Publ. Singapore (1991), pp. 1270-1303.
Reference: [49] Stein E.: Harmonic Analysis.Princeton Univ. Press, 1993. Zbl 1106.42300, MR 1232192
Reference: [50] Šverák V.: Nonlinear equations and weak convergence.Proc. of 14th Conference on PDEs, Hřensko, 1989, pp. 103-146 (in Czech).
Reference: [51] Tani A.: On the free boundary value problem for compressible viscous fluid motion.J. Math. Kyoto Univ. 21.4 (1981), 839-859. Zbl 0499.76061, MR 0637520
Reference: [52] Tani A.: Two phase free boundary value problem for compressible viscous fluid motion.J. Math. Kyoto Univ. 24.2 (1984), 243-267. MR 0751700
Reference: [53] Temam R.: Navier Stokes Equations.Mir, 1981 (in Russian), English original North Holland, 1979. Zbl 1157.35333, MR 0603444
Reference: [54] Triebel H.: Theory of Functional Spaces.Birkhauser, 1983.
Reference: [55] Valli A.: On the existence of stationary solutions to compressible Navier-Stokes equations.Ann. Inst. H. Poincaré 4 (1987), 99-113. Zbl 0627.76080, MR 0877992
Reference: [56] Valli A.: Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method.Ann. Sc. Norm. Sup. Pisa 4 (1983), 607-647. Zbl 0542.35062, MR 0753158
Reference: [57] Valli A., Zajaczkowski W.M.: Navier-Stokes equations for compressible fluids: global existence and qualitative properties of solutions in the general case.Comm. Math. Phys. 103 (1989), 259-296. MR 0826865
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_37-1996-2_9.pdf 395.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo