Previous |  Up |  Next

Article

Title: Surjectivity results for nonlinear mappings without oddness conditions (English)
Author: Feng, W.
Author: Webb, J. R. L.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 38
Issue: 1
Year: 1997
Pages: 15-28
.
Category: math
.
Summary: Surjectivity results of Fredholm alternative type are obtained for nonlinear operator equations of the form ${\lambda} T(x)-S(x)=f$, where $T$ is invertible, and $T,S$ satisfy various types of homogeneity conditions. We are able to answer some questions left open by Fu\v{c}'{\i}k, Ne\v{c}as, Sou\v{c}ek, and Sou\v{c}ek. We employ the concept of an $a$-{stably-solvable} operator, related to nonlinear spectral theory methodology. Applications are given to a nonlinear Sturm-Liouville problem and a three point boundary value problem recently studied by Gupta, Ntouyas and Tsamatos. (English)
Keyword: $(K, L, a)$ homeomorphism
Keyword: $a$-homogeneous operator
Keyword: $a$-stably solvable map
MSC: 34B10
MSC: 34B15
MSC: 47H12
MSC: 47H15
MSC: 47J05
MSC: 47J10
MSC: 47N20
idZBL: Zbl 0886.47034
idMR: MR1455467
.
Date available: 2009-01-08T18:28:51Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118899
.
Reference: [1] Fučík S., Nečas J., Souček J., Souček V.: Spectral Analysis of Nonlinear Operators.Lecture Notes in Mathematics 346, Springer-Verlag, Berlin, Heidelberg, New York, 1973. MR 0467421
Reference: [2] Furi M., Martelli M., Vignoli A.: Contributions to the spectral theory for nonlinear operators in Banach spaces.Ann. Mat. Pura. Appl. (IV) 118 (1978), 229-294. Zbl 0409.47043, MR 0533609
Reference: [3] Webb J.R.L.: On degree theory for multivalued mappings and applications.Boll. Un. Mat. It. (4) 9 (1974), 137-158. Zbl 0293.47021, MR 0367740
Reference: [4] Toland J.F.: Topological Methods for Nonlinear Eigenvalue Problems.Battelle Advanced Studies Centre, Geneva, Mathematics Report No. 77, 1973.
Reference: [5] Deimling K.: Nonlinear Functional Analysis.Springer Verlag, Berlin, 1985. Zbl 0559.47040, MR 0787404
Reference: [6] Gupta C.P., Ntouyas S.K., Tsamatos P.Ch.: On an $m$-point boundary-value problem for second-order ordinary differential equations.Nonlinear Analysis, Theory, Methods {&} Applications 23 (1994), 1427-1436. Zbl 0815.34012, MR 1306681
Reference: [7] Gupta C.P., Ntouyas S.K., Tsamatos P.Ch.: Solvability of an $m$-point boundary value problem for second order ordinary differential equations.J. Math. Anal. Appl. 189 (1995), 575-584. Zbl 0819.34012, MR 1312062
Reference: [8] Gupta C.P.: A note on a second order three-point boundary value problem.J. Math. Anal. Appl. 186 (1994), 277-281. Zbl 0805.34017, MR 1290657
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_38-1997-1_2.pdf 238.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo