Previous |  Up |  Next

Article

Title: Some non-multiplicative properties are $l$-invariant (English)
Author: Tkachuk, Vladimir V.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 38
Issue: 1
Year: 1997
Pages: 169-175
.
Category: math
.
Summary: A cardinal function $\varphi$ (or a property $\Cal P$) is called $l$-invariant if for any Tychonoff spaces $X$ and $Y$ with $C_p(X)$ and $C_p(Y)$ linearly homeomorphic we have $\varphi(X)=\varphi(Y)$ (or the space $X$ has $\Cal P$ ($\equiv X\vdash {\Cal P}$) iff $Y\vdash\Cal P$). We prove that the hereditary Lindelöf number is $l$-invariant as well as that there are models of $ZFC$ in which hereditary separability is $l$-invariant. (English)
Keyword: $l$-equivalent spaces
Keyword: $l$-invariant property
Keyword: hereditary Lindelöf number
MSC: 54A25
MSC: 54A35
MSC: 54C35
idZBL: Zbl 0886.54005
idMR: MR1455481
.
Date available: 2009-01-08T18:29:56Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118913
.
Reference: [1] Arhangel'skii A.V.: Structure and classification of topological spaces and cardinal invariants (in Russian).Uspehi Mat. Nauk 33 6 (1978), 29-84. MR 0526012
Reference: [2] Arhangel'skii A.V.: On relationship between the invariants of topological groups and their subspaces (in Russian).Uspehi Mat. Nauk 35 3 (1980), 3-22. MR 0580615
Reference: [3] Arhangel'skii A.V.: Topological function spaces (in Russian).Moscow University Publishing House, Moscow, 1989. MR 1017630
Reference: [4] Arhangel'skii A.V.: $C_p$-theory.in: Recent Progress in General Topology, edited by J. van Mill and M. Hušek, North Holland, 1992, pp.1-56. Zbl 0932.54015, MR 1229121
Reference: [5] Arhangel'skii A.V., Ponomarev V.I.: General Topology in Problems and Exercises (in Russian).Nauka Publishing House, Moscow, 1974. MR 0239550
Reference: [6] Engelking R.: General Topology.PWN, Warszawa, 1977. Zbl 0684.54001, MR 0500780
Reference: [7] Gul'ko S.P., Khmyleva T.E.: The compactness is not preserved by $t$-equivalence (in Russian).Mat. Zametki 39 6 (1986), 895-903. MR 0855937
Reference: [8] Pestov V.G.: Some topological properties are preserved by $M$-equivalence (in Russian).Uspehi Mat. Nauk 39 6 (1984), 203-204. MR 0771108
Reference: [9] Tkachuk V.V.: On a method of constructing examples of $M$-equivalent spaces (in Russian).Uspehi Mat. Nauk 38 6 (1983), 127-128. MR 0728737
Reference: [10] Todorčević S.: Forcing positive partition relations.Trans. Amer. Math. Soc. 280 2 (1983), 703-720. MR 0716846
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_38-1997-1_16.pdf 198.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo