Previous |  Up |  Next

Article

Title: Relative multiplication and distributive modules (English)
Author: Escoriza, José
Author: Torrecillas, Blas
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 38
Issue: 2
Year: 1997
Pages: 205-221
.
Category: math
.
Summary: We study the construction of new multiplication modules relative to a torsion theory $\tau $. As a consequence, $\tau $-finitely generated modules over a Dedekind domain are completely determined. We relate the relative multiplication modules to the distributive ones. (English)
Keyword: torsion theory
Keyword: semicentered torsion theory
Keyword: multiplication module
Keyword: distributive module
MSC: 13A15
MSC: 13C12
MSC: 13D30
MSC: 13F05
MSC: 13G13
idZBL: Zbl 0887.13002
idMR: MR1455487
.
Date available: 2009-01-08T18:30:15Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118918
.
Reference: [1] Albu T., Năstăsescu C.: Modules arithmétiques.Acta Math. A. S. Hung. 25 (3-4) (1974), 299-311. MR 0357383
Reference: [2] Barnard A.: Multiplication modules.J. of Algebra 71 (1981), 174-178. Zbl 0468.13011, MR 0627431
Reference: [3] Bueso J.L., Torrecillas B., Verschoren A.: Local cohomology and localization.Pitman Research Notes in Mathematics Series 226, Longman Scientific and Technical, Harlowe, 1989. Zbl 0691.14003, MR 1088249
Reference: [4] Camillo V.: Distributive modules.J. of Algebra 36 (1975), 16-25. Zbl 0308.16015, MR 0573061
Reference: [5] El-Bast Abd., Smith P.F.: Multiplication modules.Comm. in Algebra 16 (4) (1988), 755-779. Zbl 0642.13003, MR 0932633
Reference: [6] Escoriza J., Torrecillas B.: Multiplication modules relative to torsion theories.Comm. in Algebra 23 (11) (1995), 4315-4331. Zbl 0849.13008, MR 1351136
Reference: [7] Gilmer R.W.: Multiplicative ideal theory.Marcel Dekker, New York, 1972. Zbl 0804.13001, MR 0427289
Reference: [8] Griffin M.: Multiplication rings via their total quotient rings.Can. J. Math. XXVI (2) (1974), 430-449. Zbl 0259.13007, MR 0340238
Reference: [9] Hasan M.A.K., Naoum A.G.: The residual of finitely generated multiplication modules.Arch. Math. 46 (1986), 225-230. Zbl 0573.13001, MR 0834840
Reference: [10] Larsen M.D., McCarthy P.J.: Multiplicative theory of ideals.Pure and Applied Mathematics 43 Academic Press, New York, 1979. Zbl 0237.13002, MR 0414528
Reference: [11] Mehdi F., Singh S.: Multiplication modules.Canad. Math. Bull. 22 (1) (1979), 93-98. Zbl 0408.13002, MR 0532275
Reference: [12] Năstăsescu C.: La structure des modules par rapport à une topologie additive.Tôhoku Math. Journal 26 (1974), 173-201. MR 0349765
Reference: [13] Smith P.F.: On non-commutative AM-rings.Houston J. of Math. 11.3 (1985), 405-422. Zbl 0608.16009
Reference: [14] Smith P.F.: Some remarks on multiplication modules.Arch. Math. 50 (1988), 223-235. Zbl 0615.13003, MR 0933916
Reference: [15] Smith W.W.: Projective ideals of finite type.Canad. J. Math. 21 (1969), 1057-1061. Zbl 0183.04001, MR 0246864
Reference: [16] Stenström B.: Rings of Quotiens.Springer-Verlag, Berlin, 1975. MR 0389953
Reference: [17] Stephenson W.: Modules whose lattice of submodules is distributive.Proc. London Math. Soc. 3 28 (1974), 291-310. Zbl 0294.16003, MR 0338082
Reference: [18] Ukegawa T.: Some properties of non-commutative multiplication rings.Proc. Japan Acad. 54 Ser. A (1978), 279-284. Zbl 0434.16004, MR 0517670
Reference: [19] Ukegawa T.: Left noetherian multiplication rings.Osaka J. Math. 17 (1980), 449-453. Zbl 0444.16023, MR 0587765
Reference: [20] Ukegawa T.: Some remarks on $M$-rings.Math. Japonica 28 2 (1983), 195-203. Zbl 0517.16026, MR 0699583
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_38-1997-2_1.pdf 281.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo