Title:
|
Relative multiplication and distributive modules (English) |
Author:
|
Escoriza, José |
Author:
|
Torrecillas, Blas |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
38 |
Issue:
|
2 |
Year:
|
1997 |
Pages:
|
205-221 |
. |
Category:
|
math |
. |
Summary:
|
We study the construction of new multiplication modules relative to a torsion theory $\tau $. As a consequence, $\tau $-finitely generated modules over a Dedekind domain are completely determined. We relate the relative multiplication modules to the distributive ones. (English) |
Keyword:
|
torsion theory |
Keyword:
|
semicentered torsion theory |
Keyword:
|
multiplication module |
Keyword:
|
distributive module |
MSC:
|
13A15 |
MSC:
|
13C12 |
MSC:
|
13D30 |
MSC:
|
13F05 |
MSC:
|
13G13 |
idZBL:
|
Zbl 0887.13002 |
idMR:
|
MR1455487 |
. |
Date available:
|
2009-01-08T18:30:15Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/118918 |
. |
Reference:
|
[1] Albu T., Năstăsescu C.: Modules arithmétiques.Acta Math. A. S. Hung. 25 (3-4) (1974), 299-311. MR 0357383 |
Reference:
|
[2] Barnard A.: Multiplication modules.J. of Algebra 71 (1981), 174-178. Zbl 0468.13011, MR 0627431 |
Reference:
|
[3] Bueso J.L., Torrecillas B., Verschoren A.: Local cohomology and localization.Pitman Research Notes in Mathematics Series 226, Longman Scientific and Technical, Harlowe, 1989. Zbl 0691.14003, MR 1088249 |
Reference:
|
[4] Camillo V.: Distributive modules.J. of Algebra 36 (1975), 16-25. Zbl 0308.16015, MR 0573061 |
Reference:
|
[5] El-Bast Abd., Smith P.F.: Multiplication modules.Comm. in Algebra 16 (4) (1988), 755-779. Zbl 0642.13003, MR 0932633 |
Reference:
|
[6] Escoriza J., Torrecillas B.: Multiplication modules relative to torsion theories.Comm. in Algebra 23 (11) (1995), 4315-4331. Zbl 0849.13008, MR 1351136 |
Reference:
|
[7] Gilmer R.W.: Multiplicative ideal theory.Marcel Dekker, New York, 1972. Zbl 0804.13001, MR 0427289 |
Reference:
|
[8] Griffin M.: Multiplication rings via their total quotient rings.Can. J. Math. XXVI (2) (1974), 430-449. Zbl 0259.13007, MR 0340238 |
Reference:
|
[9] Hasan M.A.K., Naoum A.G.: The residual of finitely generated multiplication modules.Arch. Math. 46 (1986), 225-230. Zbl 0573.13001, MR 0834840 |
Reference:
|
[10] Larsen M.D., McCarthy P.J.: Multiplicative theory of ideals.Pure and Applied Mathematics 43 Academic Press, New York, 1979. Zbl 0237.13002, MR 0414528 |
Reference:
|
[11] Mehdi F., Singh S.: Multiplication modules.Canad. Math. Bull. 22 (1) (1979), 93-98. Zbl 0408.13002, MR 0532275 |
Reference:
|
[12] Năstăsescu C.: La structure des modules par rapport à une topologie additive.Tôhoku Math. Journal 26 (1974), 173-201. MR 0349765 |
Reference:
|
[13] Smith P.F.: On non-commutative AM-rings.Houston J. of Math. 11.3 (1985), 405-422. Zbl 0608.16009 |
Reference:
|
[14] Smith P.F.: Some remarks on multiplication modules.Arch. Math. 50 (1988), 223-235. Zbl 0615.13003, MR 0933916 |
Reference:
|
[15] Smith W.W.: Projective ideals of finite type.Canad. J. Math. 21 (1969), 1057-1061. Zbl 0183.04001, MR 0246864 |
Reference:
|
[16] Stenström B.: Rings of Quotiens.Springer-Verlag, Berlin, 1975. MR 0389953 |
Reference:
|
[17] Stephenson W.: Modules whose lattice of submodules is distributive.Proc. London Math. Soc. 3 28 (1974), 291-310. Zbl 0294.16003, MR 0338082 |
Reference:
|
[18] Ukegawa T.: Some properties of non-commutative multiplication rings.Proc. Japan Acad. 54 Ser. A (1978), 279-284. Zbl 0434.16004, MR 0517670 |
Reference:
|
[19] Ukegawa T.: Left noetherian multiplication rings.Osaka J. Math. 17 (1980), 449-453. Zbl 0444.16023, MR 0587765 |
Reference:
|
[20] Ukegawa T.: Some remarks on $M$-rings.Math. Japonica 28 2 (1983), 195-203. Zbl 0517.16026, MR 0699583 |
. |