Previous |  Up |  Next

Article

Title: Centralizers on prime and semiprime rings (English)
Author: Vukman, Joso
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 38
Issue: 2
Year: 1997
Pages: 231-240
.
Category: math
.
Summary: The purpose of this paper is to investigate identities satisfied by centralizers on prime and semiprime rings. We prove the following result: Let $R$ be a noncommutative prime ring of characteristic different from two and let $S$ and $T$ be left centralizers on $R$. Suppose that $[S(x),T(x)]S(x)+S(x)[S(x),T(x)]=0$ is fulfilled for all $x\in R$. If $S\neq 0$ $(T\neq 0)$ then there exists $\lambda $ from the extended centroid of $R$ such that $T=\lambda S$ $(S=\lambda T)$. (English)
Keyword: prime ring
Keyword: semiprime ring
Keyword: extended centroid
Keyword: derivation
Keyword: Jordan derivation
Keyword: left (right) centralizer
Keyword: Jordan left (right) centralizer
Keyword: commuting mapping
Keyword: centralizing mapping
MSC: 16A12
MSC: 16A68
MSC: 16A72
MSC: 16N60
MSC: 16U70
MSC: 16W10
MSC: 16W25
idZBL: Zbl 0889.16016
idMR: MR1455489
.
Date available: 2009-01-08T18:30:23Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118920
.
Reference: [1] Brešar M., Vukman J.: Jordan derivations on prime rings.Bull. Austral. Math. Soc. 37 (1988), 321-323. MR 0943433
Reference: [2] Brešar M.: Jordan derivations on prime rings.Proc. Amer. Math. Soc. 104 (1988), 1003-1006. MR 0929422
Reference: [3] Brešar M.: On a generalization of the notion of centralizing mappings.Proc. Amer. Math. Soc. 114 (1992), 641-649. MR 1072330
Reference: [4] Brešar M.: Centralizing mappings and derivations in prime rings.Journal of Algebra 156 (1993), 385-394. MR 1216475
Reference: [5] Brešar M.: Commuting traces of biaditive mappings, commutativity-preserving mappings and Lie mappings.Trans. Amer. Math. Soc. 335 (1993), 525-545. MR 1069746
Reference: [6] Cusak J.: Jordan derivations on rings.Proc. Amer. Math. Soc. 53 (1975), 321-324. MR 0399182
Reference: [7] Herstein I.N.: Jordan derivations on prime rings.Proc. Amer. Math. Soc. 8 (1957), 1104-1110. MR 0095864
Reference: [8] Herstein I.N.: Rings with involution.Univ. of Chicago Press, Chicago, 1976. Zbl 0495.16007, MR 0442017
Reference: [9] Martindale W.S.: Prime rings satisfying a generalized polynomial identity.Journal of Algebra 12 (1969), 576-584. Zbl 0175.03102, MR 0238897
Reference: [10] Posner E.: Derivations in prime rings.Proc. Amer. Math. Soc. 8 (1957), 1093-1100. MR 0095863
Reference: [11] Zalar B.: On centralizers of semiprime rings.Comment. Math. Univ. Carolinae 32 (1991), 609-614. Zbl 0746.16011, MR 1159807
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_38-1997-2_3.pdf 180.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo