Previous |  Up |  Next

Article

Title: Binormality of Banach spaces (English)
Author: Holický, Petr
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 38
Issue: 2
Year: 1997
Pages: 279-282
.
Category: math
.
Summary: We study binormality, a separation property of spaces endowed with two topologies known in the real analysis as the Luzin-Menchoff property. The main object of our interest are Banach spaces with their norm and weak topologies. We show that every separable Banach space is binormal and the space $\ell^{\infty}$ is not binormal. (English)
Keyword: binormality
Keyword: Luzin-Menchoff property
Keyword: Banach space
Keyword: weak topology
MSC: 46B20
MSC: 46B28
MSC: 54E55
idZBL: Zbl 0886.46012
idMR: MR1455495
.
Date available: 2009-01-08T18:30:51Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118926
.
Reference: [JNR] Jayne J.E., Namioka I., Rogers C.A.: Fragmentability and $\sigma$-fragmentability.Fund. Math. (1993), 143 207-220. Zbl 0801.46011, MR 1247801
Reference: [K] Kelly J.C.: Bitopological spaces.Proc. London Math. Soc. 13 (1963), 71-89. Zbl 0107.16401, MR 0143169
Reference: [LMZ] Lukeš J., Malý J., Zajíček L.: Fine Topology Methods in Real Analysis and Potential Theory.Lecture Notes in Mathematics 1189 (1986), Springer-Verlag Berlin, Heidelberg, New York, London, Paris, Tokyo. MR 0861411
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_38-1997-2_9.pdf 173.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo