Title:
|
On differentiability properties of Lipschitz functions on a Banach space with a Lipschitz uniformly Gâteaux differentiable bump function (English) |
Author:
|
Zajíček, Luděk |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
38 |
Issue:
|
2 |
Year:
|
1997 |
Pages:
|
329-336 |
. |
Category:
|
math |
. |
Summary:
|
We improve a theorem of P.G. Georgiev and N.P. Zlateva on G\^ateaux differentiability of Lipschitz functions in a Banach space which admits a Lipschitz uniformly G\^ateaux differentiable bump function. In particular, our result implies the following theorem: If $d$ is a distance function determined by a closed subset $A$ of a Banach space $X$ with a uniformly G\^ateaux differentiable norm, then the set of points of $X\setminus A$ at which $d$ is not G\^ateaux differentiable is not only a first category set, but it is even $\sigma$-porous in a rather strong sense. (English) |
Keyword:
|
Lipschitz function |
Keyword:
|
G\^ateaux differentiability |
Keyword:
|
uniformly G\^ateaux differentiable |
Keyword:
|
bump function |
Keyword:
|
Banach-Mazur game |
Keyword:
|
$\sigma$-porous set |
MSC:
|
41A65 |
MSC:
|
46B20 |
MSC:
|
46G05 |
idZBL:
|
Zbl 0886.46049 |
idMR:
|
MR1455499 |
. |
Date available:
|
2009-01-08T18:31:11Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/118930 |
. |
Reference:
|
[1] Deville R., Godefroy G., Zizler V.: Smoothness and Renorming in Banach Spaces.Pitman Monographs 64, Longman Essex (1993). MR 1211634 |
Reference:
|
[2] Fabian M., Zhivkov N.V.: A characterization of Asplund spaces with the help of local $\epsilon$-supports of Ekeland and Lebourg.C.R. Acad. Sci. Bulg. 38 (1985), 671-674. Zbl 0577.46012, MR 0805439 |
Reference:
|
[3] Georgiev P.G.: Submonotone mappings in Banach spaces and differentiability of non-convex functions.C.R. Acad. Sci. Bulg. 42 (1989), 13-16. Zbl 0715.49016, MR 1020610 |
Reference:
|
[4] Georgiev P.G.: The smooth variational principle and generic differentiability.Bull. Austral. Math. Soc. 43 (1991), 169-175. Zbl 0717.49014, MR 1086731 |
Reference:
|
[5] Georgiev P.G.: Submonotone mappings in Banach spaces and applications.preprint. Zbl 0898.46015, MR 1451845 |
Reference:
|
[6] Georgiev P.G., Zlateva N.P.: An application of the smooth variational principle to generic Gâteaux differentiability.preprint. |
Reference:
|
[7] Zajíček L.: Differentiability of the distance function and points of multi-valuedness of the metric projection in Banach space.Czechoslovak Math. J. 33(108) (1983), 292-308. MR 0699027 |
Reference:
|
[8] Zajíček L.: A generalization of an Ekeland-Lebourg theorem and the differentiability of distance functions.Suppl. Rend. Circ. Mat. di Palermo, Ser. II 3 (1984), 403-410. MR 0744405 |
Reference:
|
[9] Zajíček L.: A note on $\sigma$-porous sets.Real Analysis Exchange 17 (1991-92), p.18. |
Reference:
|
[10] Zajíček L.: Products of non-$\sigma$-porous sets and Foran systems.submitted to Atti Sem. Mat. Fis. Univ. Modena. MR 1428780 |
Reference:
|
[11] Zelený M.: The Banach-Mazur game and $\sigma$-porosity.Fund. Math. 150 (1996), 197-210. MR 1405042 |
Reference:
|
[12] Zhivkov N.V.: Generic Gâteaux differentiability of directionally differentiable mappings.Rev. Roumaine Math. Pures Appl. 32 (1987), 179-188. Zbl 0628.46044, MR 0889011 |
Reference:
|
[13] Wee-Kee Tang: Uniformly differentiable bump functions.preprint. MR 1421846 |
. |