Previous |  Up |  Next

Article

Title: On linear functorial operators extending pseudometrics (English)
Author: Banakh, T.
Author: Pikhurko, O.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 38
Issue: 2
Year: 1997
Pages: 343-348
.
Category: math
.
Summary: For a functor $F\supset Id$ on the category of metrizable compacta, we introduce a conception of a linear functorial operator $T=\{T_X:Pc(X)\to Pc(FX)\}$ extending (for each $X$) pseudometrics from $X$ onto $FX\supset X$ (briefly LFOEP for $F$). The main result states that the functor $SP^n_G$ of $G$-symmetric power admits a LFOEP if and only if the action of $G$ on $\{1,\dots,n\}$ has a one-point orbit. Since both the hyperspace functor $\exp$ and the probability measure functor $P$ contain $SP^2$ as a subfunctor, this implies that both $\exp$ and $P$ do not admit LFOEP. (English)
Keyword: linear functorial operator extending (pseudo)metrics
Keyword: the functor of $G$-symmetric power
MSC: 46M15
MSC: 54B30
MSC: 54C20
MSC: 54E35
idZBL: Zbl 0886.54010
idMR: MR1455501
.
Date available: 2009-01-08T18:31:20Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118932
.
Related article: http://dml.cz/handle/10338.dmlcz/118975
.
Reference: Banakh T.: AE(0)-spaces and regular operators extending (averaging) pseudometrics.Bull. Polon. Acad. Sci. Ser. Sci. Math. (1994), 42 197-206. Zbl 0827.54010, MR 1811849
Reference: Bessaga C., Pełczyński A.: On the spaces of measurable functions.Studia Math. 44 (1972), 597-615. MR 0368068
Reference: Fedorchuk V.V.: On some geometric properties of covariant functors (in Russian).Uspekhi Mat. Nauk 39 (1984), 169-208. MR 0764014
Reference: Fedorchuk V.V.: Triples of infinite iterates of metrizable functors (in Russian).Izv. Akad. Nauk SSSR Ser. Mat. (1990), 54 396-418.
Reference: Fedorchuk V.V., Filippov V.V.: General Topology. Principal Constructions (in Russian).Moscow Univ. Press Moscow (1988).
Reference: Pikhurko O.: Extending metrics in compact pairs.Mat. Studiï 3 (1994), 103-106. Zbl 0927.54029, MR 1692801
Reference: Zarichnyi M.: Regular linear operators extending metrics: a short proof.Bull. Polish. Acad. Sci. 44 (1996), 267-269. Zbl 0866.54017, MR 1419399
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_38-1997-2_15.pdf 191.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo