Previous |  Up |  Next

Article

Title: Some types of implicative ideals (English)
Author: Beran, Ladislav
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 39
Issue: 2
Year: 1998
Pages: 219-225
.
Category: math
.
Summary: This paper studies basic properties for five special types of implicative ideals (modular, pentagonal, even, rectangular and medial). The results are used to prove characterizations of modularity and distributivity. (English)
Keyword: implicative ideals
Keyword: modular ideals
Keyword: pentagonal ideals
Keyword: even ideals
Keyword: rectangular ideals
Keyword: medial ideals
Keyword: modularity
Keyword: distributivity
MSC: 06B10
MSC: 06C05
MSC: 06C99
MSC: 06D05
MSC: 06D99
idZBL: Zbl 0938.06004
idMR: MR1651930
.
Date available: 2009-01-08T18:40:14Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119001
.
Reference: [1] Beran L.: On semiprime ideals in lattices.Journ. Pure Appl. Algebra 64 (1990), 223-227. Zbl 0703.06003, MR 1061299
Reference: [2] Beran L.: Orthomodular Lattices (Algebraic Approach).Reidel Dordrecht (1985). Zbl 0558.06008, MR 0784029
Reference: [3] Beran L., Salvati S.: Boolean algebras revisited.Boll. Unione Matem. Italiana, ser. VII, 9 (sez. B) (1997), 895-901. Zbl 0895.06007, MR 1491733
Reference: [4] Rav Y.: Semiprime ideals in general lattices.Journ. Pure Appl. Algebra 56 (1989), 105-118. Zbl 0665.06006, MR 0979666
Reference: [5] Salvati S.: A characterization of Boolean algebras.Ricerche di Matematica 43 (1994), 357-363. Zbl 0915.06005, MR 1324757
Reference: [6] Zassenhaus H.: The Theory of Groups, (2nd ed.).Vandenhoeck & Ruprecht Göttingen (1958). Zbl 0083.24517, MR 0091275
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_39-1998-2_1.pdf 185.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo