Previous |  Up |  Next

Article

Title: On the Hölder continuity of weak solutions to nonlinear parabolic systems in two space dimensions (English)
Author: Naumann, J.
Author: Wolf, J.
Author: Wolff, M.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 39
Issue: 2
Year: 1998
Pages: 237-255
.
Category: math
.
Summary: We prove the interior Hölder continuity of weak solutions to parabolic systems $$ \frac{\partial u^j}{\partial t}-D_\alpha a_j^\alpha(x,t,u,\nabla u)=0 \text{ in } Q \quad (j=1,\ldots,N) $$ ($Q=\Omega\times(0,T),\Omega\subset\Bbb R^2$), where the coefficients $a_j^\alpha(x,t,u,\xi)$ are measurable in $x$, Hölder continuous in $t$ and Lipschitz continuous in $u$ and $\xi$. (English)
Keyword: nonlinear parabolic systems
Keyword: Hölder continuity
Keyword: Fourier transform
MSC: 35B65
MSC: 35D10
MSC: 35K40
MSC: 35K55
idZBL: Zbl 0940.35046
idMR: MR1651938
.
Date available: 2009-01-08T18:40:23Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119003
.
Reference: [1] Brezis H.: Opérateurs maximaux monotones et semigroupes de contractions dans les espaces de Hilbert.North-Holland, Amsterdam: Elsevier, New York, 1973. MR 0348562
Reference: [2] Campanato S.: Equazioni paraboliche del $2^0$ ordine e spazi ${\Cal L}^{(2,\theta)}(Ømega,\delta)$.Ann. Mat. Pura Appl. (4) 73 (1966), 55-102. MR 0213737
Reference: [3] Campanato S.: On the nonlinear parabolic systems in divergence form. Hölder continuity and partial Hölder continuity of the solutions.Ann. Mat. Pura Appl. (4) 137 (1984), 83-122. Zbl 0704.35024, MR 0772253
Reference: [4] Da Prato G.: Spazi ${\Cal L}^{(p,\theta)}(Ømega,\delta)$ e loro proprietà.Ann. Mat. Pura Appl. (4) 69 (1965), 383-392. Zbl 0145.16207, MR 0192330
Reference: [5] Giaquinta M.: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems.Princeton Univ. Press, Princeton, New Jersey, 1983. Zbl 0516.49003, MR 0717034
Reference: [6] John O., Stará J.: On the regularity of weak solutions to parabolic systems in two dimensions.to appear.
Reference: [7] Kalita E.: On the Hölder continuity of solutions of nonlinear parabolic systems.Comment. Math. Univ. Carolinae 35 (1994), 675-680. Zbl 0814.35011, MR 1321237
Reference: [8] Koshelev A.: Regularity of solutions for some quasilinear parabolic systems.Math. Nachr. 162 (1993), 59-88. Zbl 0811.35064, MR 1239576
Reference: [9] Ladyzenskaja O.A., Solonnikov V.A., Ural'ceva N.N.: Linear and quasilinear equations of parabolic type.Transl. Math. Monographs 28, Amer. Math. Soc., Providence, R.I., 1968. MR 0241822
Reference: [10] Naumann J., Wolf J.: Interior differentiability of weak solutions to parabolic systems with quadratic growth nonlinearities.to appear. Zbl 0894.35050, MR 1066428
Reference: [11] Nečas J., Šverák V.: On regularity of nonlinear parabolic systems.Ann. Scuola Norm. Sup. Pisa (4) 18 (1991), 1-11. MR 1118218
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_39-1998-2_3.pdf 279.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo