Previous |  Up |  Next

Article

Title: Multiplication of distributions (English)
Author: Boie, Volker
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 39
Issue: 2
Year: 1998
Pages: 309-321
.
Category: math
.
Summary: Multiplication by harmonic representations of distributions, introduced by Li Banghe, is an extension of a certain product by radial (rotationally symmetric) mollifiers and therefore a strict extension of the Kami'{n}ski and Colombeau product. (English)
Keyword: distribution products
Keyword: multiplication
Keyword: harmonic representations
Keyword: Kami'nski product
MSC: 46F10
idZBL: Zbl 0937.46031
idMR: MR1651955
.
Date available: 2009-01-08T18:40:45Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119008
.
Reference: [1] Boie V.: Partielle Multiplikationen in Distributionenräumen.Dissertation, Universität Hannover, 1996. Zbl 0876.46032
Reference: [2] Itano M.: On the multiplicative product of distributions.J. Sci. Hiroshima Univ., Ser. A-I 29 (1965), 51-74. MR 0184079
Reference: [3] Jelínek J.: Distinguishing example for the Tillmann product of distributions.Comment. Math. Univ. Carolinae 31 (1990), 693-700. MR 1091366
Reference: [4] Jelínek J.: A contribution to the equivalence results for the product of distributions.Comment. Math. Univ. Carolinae 35 (1994), 263-266. MR 1286573
Reference: [5] Jelínek J.: Characterization of the Colombeau product of distributions.Comment. Math. Univ. Carolinae 27 (1986), 377-394. MR 0857556
Reference: [6] Kamiński A.: Convolution, product and Fourier transform of distributions.Studia Math. 74 (1982), 83-96. MR 0675434
Reference: [7] Langebruch M.: Randverteilungen von Nullösungen hypoelliptischer Differentialgleichungen.Manuscripta Math. 26 (1978), 17-35. MR 0513144
Reference: [8] Li Banghe: Nonstandard analysis and multiplication of distributions.Scientia Scinica, Ser. A 21 (1978), 561-585. MR 0513744
Reference: [9] Li Banghe, Li Yaqing: Nonstandard analysis and multiplication of distributions in any dimension.Scientia Scinica, Ser. A 28 (1985), 716-726. Zbl 0597.46034, MR 0813857
Reference: [10] Li Banghe, Li Yaqing: On the harmonic and analytic representations of distributions.Scientia Scinica, Ser. A 28 (1985), 923-937. Zbl 0597.46039
Reference: [11] Liu Shangping: Distributions in $\Cal D'(\Bbb R^n)$ as boundary values of harmonic functions.Scientia Scinica, Ser. A 27 (1984), 897-904. MR 0767622
Reference: [12] Oberguggenberger M.: Products of distributions: Nonstandard methods.Zeitschr. Anal. Anw. 7 (1988), 347-365; Correction: {Zeitschr. Anal. Anw.} 10 (1991), 263-264. Zbl 0662.46048, MR 0963445
Reference: [13] Oberguggenberger M.: Multiplication of distributions and applications to partial differential equations.Pitman Research Notes in Mathematics, vol. 259, 1992. Zbl 0818.46036, MR 1187755
Reference: [14] Schwartz L.: Sur l'impossibilité de la multiplication des distributions.C.R. Acad. Sci., Paris 239 (1954), 847-848. Zbl 0056.10602, MR 0064324
Reference: [15] Schwartz L.: Théorie des distributions.Hermann, Paris, nouv. edition, 1966. Zbl 0962.46025, MR 0209834
Reference: [16] Tillmann H.G.: Darstellung der Schwartzschen Distributionen durch analytische Funktionen.Math. Zeitschr. 77 (1961), 106-124. Zbl 0099.09703, MR 0139002
Reference: [17] Wawak R.: On the Colombeau product of distributions.in Generalized functions and convergence, P. Antosik and A. Kamiński, eds., World Scientific, Singapore, 1990, pp.279-284. MR 1085515
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_39-1998-2_8.pdf 248.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo