Title:
|
The existence of initially $\omega_1$-compact group topologies on free Abelian groups is independent of ZFC (English) |
Author:
|
Tomita, Artur Hideyuki |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
39 |
Issue:
|
2 |
Year:
|
1998 |
Pages:
|
401-413 |
. |
Category:
|
math |
. |
Summary:
|
It was known that free Abelian groups do not admit a Hausdorff compact group topology. Tkachenko showed in 1990 that, under CH, a free Abelian group of size ${\frak C}$ admits a Hausdorff countably compact group topology. We show that no Hausdorff group topology on a free Abelian group makes its $\omega$-th power countably compact. In particular, a free Abelian group does not admit a Hausdorff $p$-compact nor a sequentially compact group topology. Under CH, we show that a free Abelian group does not admit a Hausdorff initially $\omega_1$-compact group topology. We also show that the existence of such a group topology is independent of ${\frak C} = \aleph_2$. (English) |
Keyword:
|
free Abelian group |
Keyword:
|
countable compactness |
Keyword:
|
products |
Keyword:
|
initially $\omega_1$-compact |
Keyword:
|
Martin's Axiom |
MSC:
|
22B99 |
MSC:
|
54D30 |
MSC:
|
54H11 |
idZBL:
|
Zbl 0938.54034 |
idMR:
|
MR1651991 |
. |
Date available:
|
2009-01-08T18:41:30Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119017 |
. |
Reference:
|
[1] Comfort W.W.: Topological groups.Handbook of Set-Theoretic Topology (K. Kunen and J. Vaughan, eds.), North-Holland, 1984, pp.1143-1263. Zbl 1071.54019, MR 0776643 |
Reference:
|
[2] Comfort W.W.: Problems on topological groups and other homogeneous spaces.Open Problems in Topology (J. van Mill and G. M. Reed, eds.), North-Holland, 1990, pp.311-347. MR 1078657 |
Reference:
|
[3] Comfort W.W., Remus D.: Imposing pseudocompact group topologies on Abelian groups.Fundamenta Mathematica 142 (1993), 221-240. Zbl 0865.54035, MR 1220550 |
Reference:
|
[4] Dikranjan D., Shakhmatov D.: Pseudocompact topologies on groups.Topology Proc. 17 (1992), 335-342. Zbl 0795.22001, MR 1255816 |
Reference:
|
[5] van Douwen E.K.: The product of two countably compact topological groups.Trans. Amer. Math. Soc. 262 (1980), 417-427. Zbl 0453.54006, MR 0586725 |
Reference:
|
[6] Engelking R.: General Topology.Heldermann Verlag, 1989. Zbl 0684.54001, MR 1039321 |
Reference:
|
[7] Hart K.P., van Mill J.: A countably compact $H$ such that $H\times H$ is not countably compact.Trans. Amer. Math. Soc. 323 (1991), 811-821. MR 0982236 |
Reference:
|
[8] Hajnal A., Juhász I.: A separable normal topological group need not be Lindelöf.General Topology Appl. 6 (1976), 199-205. MR 0431086 |
Reference:
|
[9] Kunen K.: Set Theory.North Holland, 1980. Zbl 0960.03033, MR 0597342 |
Reference:
|
[10] Robbie D., Svetlichny S.: An answer to A.D. Wallace's question about countably compact cancellative semigroups.Proc. Amer. Math. Soc. 124 (1996), 325-330. Zbl 0843.22001, MR 1328373 |
Reference:
|
[11] Tkachenko M.G.: Countably compact and pseudocompact topologies on free Abelian groups.Izvestia VUZ. Matematika 34 (1990), 68-75. Zbl 0714.22001, MR 1083312 |
Reference:
|
[12] Tomita A.H.: The Wallace Problem: a counterexample from $M A_{countable}$ and $p$-compactness.Canadian Math. Bull. 39 (1996), 4 486-498. MR 1426694 |
Reference:
|
[13] Tomita A.H.: On finite powers of countably compact groups.Comment. Math. Univ. Carolinae 37 (1996), 3 617-626. Zbl 0881.54022, MR 1426926 |
Reference:
|
[14] Tomita A.H.: A group under $M A_{countable}$ whose square is countably compact but whose cube is not.to appear in Topology Appl. |
Reference:
|
[15] Tomita A.H.: Countable compactness and related properties in groups and semigroups: free Abelian groups and the Wallace Problem.Ph.D Thesis, York University, June 1995. |
Reference:
|
[16] Vaughan J.: Countably compact and sequentially compact spaces.Handbook of Set-Theoretic Topology (K. Kunen and J. Vaughan, eds.), North-Holland, 1984, pp.569-602. Zbl 0562.54031, MR 0776631 |
Reference:
|
[17] Wallace A.D.: The structure of topological semigroups.Bull. Amer. Math. Soc. 61 (1955), 95-112. Zbl 0065.00802, MR 0067907 |
Reference:
|
[18] Weiss W.: Versions of Martin's Axiom.Handbook of Set-Theoretic Topology (K. Kunen and J. Vaughan, eds.), North-Holland, 1984, pp.827-886. Zbl 0571.54005, MR 0776638 |
. |