Previous |  Up |  Next

Article

Title: The existence of initially $\omega_1$-compact group topologies on free Abelian groups is independent of ZFC (English)
Author: Tomita, Artur Hideyuki
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 39
Issue: 2
Year: 1998
Pages: 401-413
.
Category: math
.
Summary: It was known that free Abelian groups do not admit a Hausdorff compact group topology. Tkachenko showed in 1990 that, under CH, a free Abelian group of size ${\frak C}$ admits a Hausdorff countably compact group topology. We show that no Hausdorff group topology on a free Abelian group makes its $\omega$-th power countably compact. In particular, a free Abelian group does not admit a Hausdorff $p$-compact nor a sequentially compact group topology. Under CH, we show that a free Abelian group does not admit a Hausdorff initially $\omega_1$-compact group topology. We also show that the existence of such a group topology is independent of ${\frak C} = \aleph_2$. (English)
Keyword: free Abelian group
Keyword: countable compactness
Keyword: products
Keyword: initially $\omega_1$-compact
Keyword: Martin's Axiom
MSC: 22B99
MSC: 54D30
MSC: 54H11
idZBL: Zbl 0938.54034
idMR: MR1651991
.
Date available: 2009-01-08T18:41:30Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119017
.
Reference: [1] Comfort W.W.: Topological groups.Handbook of Set-Theoretic Topology (K. Kunen and J. Vaughan, eds.), North-Holland, 1984, pp.1143-1263. Zbl 1071.54019, MR 0776643
Reference: [2] Comfort W.W.: Problems on topological groups and other homogeneous spaces.Open Problems in Topology (J. van Mill and G. M. Reed, eds.), North-Holland, 1990, pp.311-347. MR 1078657
Reference: [3] Comfort W.W., Remus D.: Imposing pseudocompact group topologies on Abelian groups.Fundamenta Mathematica 142 (1993), 221-240. Zbl 0865.54035, MR 1220550
Reference: [4] Dikranjan D., Shakhmatov D.: Pseudocompact topologies on groups.Topology Proc. 17 (1992), 335-342. Zbl 0795.22001, MR 1255816
Reference: [5] van Douwen E.K.: The product of two countably compact topological groups.Trans. Amer. Math. Soc. 262 (1980), 417-427. Zbl 0453.54006, MR 0586725
Reference: [6] Engelking R.: General Topology.Heldermann Verlag, 1989. Zbl 0684.54001, MR 1039321
Reference: [7] Hart K.P., van Mill J.: A countably compact $H$ such that $H\times H$ is not countably compact.Trans. Amer. Math. Soc. 323 (1991), 811-821. MR 0982236
Reference: [8] Hajnal A., Juhász I.: A separable normal topological group need not be Lindelöf.General Topology Appl. 6 (1976), 199-205. MR 0431086
Reference: [9] Kunen K.: Set Theory.North Holland, 1980. Zbl 0960.03033, MR 0597342
Reference: [10] Robbie D., Svetlichny S.: An answer to A.D. Wallace's question about countably compact cancellative semigroups.Proc. Amer. Math. Soc. 124 (1996), 325-330. Zbl 0843.22001, MR 1328373
Reference: [11] Tkachenko M.G.: Countably compact and pseudocompact topologies on free Abelian groups.Izvestia VUZ. Matematika 34 (1990), 68-75. Zbl 0714.22001, MR 1083312
Reference: [12] Tomita A.H.: The Wallace Problem: a counterexample from $M A_{countable}$ and $p$-compactness.Canadian Math. Bull. 39 (1996), 4 486-498. MR 1426694
Reference: [13] Tomita A.H.: On finite powers of countably compact groups.Comment. Math. Univ. Carolinae 37 (1996), 3 617-626. Zbl 0881.54022, MR 1426926
Reference: [14] Tomita A.H.: A group under $M A_{countable}$ whose square is countably compact but whose cube is not.to appear in Topology Appl.
Reference: [15] Tomita A.H.: Countable compactness and related properties in groups and semigroups: free Abelian groups and the Wallace Problem.Ph.D Thesis, York University, June 1995.
Reference: [16] Vaughan J.: Countably compact and sequentially compact spaces.Handbook of Set-Theoretic Topology (K. Kunen and J. Vaughan, eds.), North-Holland, 1984, pp.569-602. Zbl 0562.54031, MR 0776631
Reference: [17] Wallace A.D.: The structure of topological semigroups.Bull. Amer. Math. Soc. 61 (1955), 95-112. Zbl 0065.00802, MR 0067907
Reference: [18] Weiss W.: Versions of Martin's Axiom.Handbook of Set-Theoretic Topology (K. Kunen and J. Vaughan, eds.), North-Holland, 1984, pp.827-886. Zbl 0571.54005, MR 0776638
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_39-1998-2_17.pdf 261.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo