Previous |  Up |  Next

Article

Title: On the fusion problem for degenerate elliptic equations II (English)
Author: Buckley, Stephen M.
Author: Koskela, Pekka
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 40
Issue: 1
Year: 1999
Pages: 1-6
.
Category: math
.
Summary: Let $F$ be a relatively closed subset of a Euclidean domain $\Omega$. We investigate when solutions $u$ to certain elliptic equations on $\Omega\setminus F$ are restrictions of solutions on all of $\Omega$. Specifically, we show that if $\partial F$ is not too large, and $u$ has a suitable decay rate near $F$, then $u$ can be so extended. (English)
Keyword: $\Cal A$-harmonic function
Keyword: Hausdorff measure
Keyword: Fusion problem
MSC: 28A78
MSC: 35J60
MSC: 35J70
idZBL: Zbl 1060.35511
idMR: MR1715198
.
Date available: 2009-01-08T18:49:10Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119059
.
Reference: [1] Falconer K.J.: Geometry of Fractal Sets.Cambridge Univ. Press, Cambridge, 1985. Zbl 0587.28004, MR 0867284
Reference: [2] Heinonen J., Kilpeläinen T., Martio O.: Nonlinear Potential Theory of Degenerate Elliptic Equations.Oxford Univ. Press, Oxford, 1993. MR 1207810
Reference: [3] Kilpeläinen T.: A Radó type theorem for $p$-harmonic functions in the plane.Electr. J. Diff. Eqns. 9 (1994), electronic. MR 1303907
Reference: [4] Kilpeläinen T., Koskela P., Martio O.: On the fusion problem for degenerate elliptic equations.Comm. P.D.E. 20 (1995), 485-497. MR 1318078
Reference: [5] Koskela P., Martio O.: Removability theorems for solutions of degenerate elliptic partial differential equations.Ark. Mat. 31 (1993), 339-353. Zbl 0845.35015, MR 1263558
Reference: [6] Král J.: Some extension results concerning harmonic functions.J. London Math. Soc. 28 (1983), 62-70. MR 0703465
Reference: [7] Miller K.: Non-unique continuation for certain ODE's in Hilbert space and for uniformly parabolic and elliptic equations in self-adjoint divergence form.in Symposium on non-well-posed problems and logarithmic convexity, ed. R.J. Knops, Lecture Notes in Math. 316, pp.85-101, Springer-Verlag, Berlin, 1973. Zbl 0265.35019, MR 0393783
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_40-1999-1_1.pdf 193.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo