Previous |  Up |  Next

Article

Title: Directional moduli of rotundity and smoothness (English)
Author: Bartlett, Michael O.
Author: Giles, John R.
Author: Vanderwerff, Jon D.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 40
Issue: 1
Year: 1999
Pages: 39-51
.
Category: math
.
Summary: We study various notions of directional moduli of rotundity and when such moduli of rotundity of power type imply the underlying space is superreflexive. Duality with directional moduli of smoothness and some applications are also discussed. (English)
Keyword: uniform rotundity
Keyword: uniform smoothness
Keyword: moduli of power type
Keyword: superreflexive
MSC: 46B03
MSC: 46B20
idZBL: Zbl 1060.46501
idMR: MR1715201
.
Date available: 2009-01-08T18:49:34Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119062
.
Reference: [1] Borwein J.M., Noll D.: Second-order differentiability of convex functions in Banach spaces.Trans. Amer. Math. Soc. 342 (1994), 43-81. Zbl 0802.46027, MR 1145959
Reference: [2] Borwein J.M., Treiman J.S., Zhu Q.J.: Partially smooth variational principles and applications.preprint. Zbl 0927.49010, MR 1707806
Reference: [3] Bourgin R.D.: Geometric Aspects of Convex Sets with the Radon-Nikodym Property.Lecture Notes in Mathematics 993, Springer-Verlag, 1983. Zbl 0512.46017, MR 0704815
Reference: [4] Cudia D.F.: The geometry of Banach spaces. Smoothness.Trans. Amer. Math. Soc. 110 (1964), 284-314. Zbl 0123.30701, MR 0163143
Reference: [5] Day M.M.: Uniform convexity III.Bull. Amer. Math. Soc. 49 (1943), 745-750. Zbl 0063.01056, MR 0009422
Reference: [6] Deville R., Godefroy G., Zizler V.: Smoothness and Renormings in Banach Spaces.Pitman Monographs and Surveys in Pure and Applied Mathematics 64, Longman, 1993. Zbl 0782.46019, MR 1211634
Reference: [7] Deville R., Godefroy G., Zizler V.: Smooth bump functions and the geometry of Banach spaces.Mathematika 40 (1993), 305-321. MR 1260894
Reference: [8] Fabian M.: Lipschitz smooth points of convex functions and isomorphic characterizations of Hilbert spaces.Proc. London Math. Soc. 51 (1985), 113-126. Zbl 0549.46025, MR 0788852
Reference: [9] Giles J.R., Sciffer S.: On weak Hadamard differentiability of convex functions on Banach spaces.Bull. Austral. Math. Soc. 54 (1996), 155-166. Zbl 0886.46050, MR 1403000
Reference: [10] Hájek P.: Dual renormings of Banach spaces.Comment. Math. Univ. Carolinae 37 (1996), 241-253. MR 1398999
Reference: [11] McLaughlin D., Poliquin R., Vanderwerff J., Zizler V.: Second-order Gateaux differentiable bump functions and approximations in Banach spaces.Canad. J. Math. 45 (1993), 612-625. Zbl 0796.46005, MR 1222519
Reference: [12] McLaughlin D., Vanderwerff J.: Higher-order Gateaux differentiable bump functions on Banach spaces.Bull. Austral. Math. Soc. 51 (1995), 291-300. MR 1322795
Reference: [13] Moors W.B., Giles J.R.: Generic continuity of minimal set-valued mappings.J. Austral. Math. Soc. 63A (1997), 238-262. Zbl 0912.46017, MR 1475564
Reference: [14] Smith M.A.: Banach spaces that are uniformly rotund in weakly compact sets of directions.Canad. J. Math. 29 (1977), 963-970. Zbl 0338.46021, MR 0450942
Reference: [15] Smith M.A.: A curious generalization of local uniform rotundity.Comment. Math. Univ. Carolinae 25 (1984), 659-665. Zbl 0578.46017, MR 0782015
Reference: [16] Swaminathan S.: Normal structure in Banach spaces and its generalisations.Contemporary Mathematics 18 (1983), 201-215. Zbl 0512.46014, MR 0728601
Reference: [17] Turett B.: A dual view of a theorem of Ballion.Nonlinear Analysis and Applications, Dekker, New York, 1982, pp.279-286. MR 0689566
Reference: [18] Zajíček L.: Differentiability of the distance function and points of multivaluedness of the metric projection in Banach spaces.Czech. Math. J. 33 (1983), 292-308. MR 0699027
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_40-1999-1_4.pdf 268.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo