Previous |  Up |  Next

Article

Title: On Asplund functions (English)
Author: Tang, Wee-Kee
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 40
Issue: 1
Year: 1999
Pages: 121-132
.
Category: math
.
Summary: A class of convex functions where the sets of subdifferentials behave like the unit ball of the dual space of an Asplund space is found. These functions, which we called Asplund functions also possess some stability properties. We also give a sufficient condition for a function to be an Asplund function in terms of the upper-semicontinuity of the subdifferential map. (English)
Keyword: Fréchet differentiability
Keyword: convex functions
Keyword: Asplund spaces
MSC: 46B03
MSC: 46B20
MSC: 46G99
MSC: 58C20
idZBL: Zbl 1060.46505
idMR: MR1715206
.
Date available: 2009-01-08T18:50:15Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119067
.
Reference: [C-P] Contreras M.D., Payá R.: On upper semicontinuity of duality mappings.Proc. Amer. Math. Soc. 112 (1994), 451-459. MR 1215199
Reference: [D-G-Z] Deville R., Godefroy G., Zizler V.: Smoothness and Renormings in Banach Spaces.Pitman Monograph and Survey in Pure and Applied Mathematics \bf{64}. Zbl 0782.46019, MR 1211634
Reference: [Du-N] Dulst D.V., Namioka I.: A note on trees in conjugate Banach spaces.Indag. Math. 46 (1984), 7-10. Zbl 0537.46025, MR 0748973
Reference: [N-Ph] Namioka I., Phelps R.R.: Banach spaces which are Asplund spaces.Duke Math J. 42 (1975), 735-749. Zbl 0332.46013, MR 0390721
Reference: [F] Fabian M.: On projectional resolution of identity on the duals of certain Banach spaces.Bull. Austral. Math. Soc. 35 (1987), 363-371. MR 0888895
Reference: [Go] Godefroy G.: Some applications of Simons' inequality.Sem. Funct. Anal., University of Murcia, to appear. MR 1767034
Reference: [Gi] Giles J.R.: On the characterisation of Asplund spaces.J. Austral. Math. Soc. (Ser. A) 32 (1982), 134-144. Zbl 0486.46019, MR 0643437
Reference: [Gi-Gr-Si] Giles J.R., Gregory D.A., Sims B.: Geometric implications of upper semi-continuity of the duality mapping on a Banach space.Pacific J. Math. 79 (1978), 99-109. MR 0526669
Reference: [Gi-Sc] Giles J.R., Sciffer S.: Separable determination of Fréchet differentiability of convex functions.Bull. Austral. Math. Soc. 52 (1995), 161-167. Zbl 0839.46036, MR 1344269
Reference: [J-N-R] Jayne J.E., Namioka I., Rogers C.A.: $\sigma $-fragmentable Banach spaces.Mathematika 39 (1992), 161-188. Zbl 0761.46009, MR 1176478
Reference: [Ph] Phelps R.R.: Convex Functions, Monotone Operators and Differentiability.Lect. Notes. in Math., Springer-Verlag 1364 (1993) (Second Edition). Zbl 0921.46039, MR 1238715
Reference: [Pr] Preiss D.: Gâteaux differentiable functions are somewhere Fréchet differentiable.Rend. Cir. Mat. Pal. 33 (1984), 122-133. Zbl 0573.46024, MR 0743214
Reference: [Pr-Z] Preiss D., Zajíček D.: Fréchet differentiability of convex functions in Banach space with separable duals.Proc. Amer. Math. Soc. 91 (1984), 202-204. MR 0740171
Reference: [S] Simons S.: A convergence theorem with boundary.Pacific J. Math. 40 (1972), 703-708. Zbl 0237.46012, MR 0312193
Reference: [St] Stegall C.: The Radon-Nikodym property in conjugate Banach spaces.Trans. Amer. Math. Soc. 206 (1975), 213-223. Zbl 0318.46056, MR 0374381
Reference: [T$_{1}$] Tang W.-K.: On Fréchet differentiability of convex functions on Banach spaces.Comment. Math. Univ. Carolinae 36 (1995), 249-253. Zbl 0831.46045, MR 1357526
Reference: [T$_{2}$] Tang W.-K.: Sets of differentials and smoothness of convex functions.Bull. Austral. Math. Soc. 52 (1995), 91-96. Zbl 0839.46008, MR 1344263
Reference: [Y] Yost D.: Asplund spaces for beginners.Acta Univ. Carolinae 34 (1993), 159-177. Zbl 0815.46022, MR 1282979
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_40-1999-1_9.pdf 244Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo