Previous |  Up |  Next

Article

Keywords:
clones of topological spaces; algebraic theories; unit interval
Summary:
This paper gives a partial solution to a problem of W. Taylor on characterization of the unit interval in the class of all topological spaces by means of the first order properties of their clones. A characterization within the class of compact spaces is obtained.
References:
[1] García O.C., Taylor W.: The lattice of interpretability types of varieties. Mem. Amer. Math. Soc. 50 305 (1984). MR 0749524
[2] Grätzer G.: Universal algebra. 2-nd ed. Springer-Verlag Berlin and New York (1979). MR 0538623
[3] Herrlich H.: On the concept of reflection in general topology. Conf. on Contributions to Extension Theory of Topological Structures Berlin (1967).
[4] Herrlich H.: Topologische Reflexionen und Coreflexionen. Lecture Notes in Math. 78 Springer-Verlag Berlin Heidelberg New York (1968). MR 0256332 | Zbl 0182.25302
[5] Kuratowski K.: Topologie I, II. Monogr. Mat. Warsaw (1950).
[6] Lawvere F.W.: Functorial semantics of algebraic theories. Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 869-872. MR 0158921 | Zbl 0119.25901
[7] Neumann W.N.: On Malcev conditions. J. Austral. Math. Soc. 17 (1974), 376-384. MR 0371781 | Zbl 0294.08004
[8] Pultr A., Trnková V.: Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories. North-Holland Amsterdam (1980). MR 0563525
[9] Sichler J., Trnková V.: On elementary equivalence and isomorphism of clone segments. Period. Math. Hungar. 32 (1996), 113-128. MR 1407914
[10] Taylor W.: The Clone of a Topological Space. Res. Exp. Math. 13 Heldermann Verlag (1986). MR 0879120 | Zbl 0615.54013
[11] Trnková V.: Semirigid spaces. Trans. Amer. Math. Soc. 343 1 (1994), 305-325. MR 1219734
Partner of
EuDML logo