Previous |  Up |  Next

Article

Title: On locally $r$-incomparable families of infinite-dimensional Cantor manifolds (English)
Author: Chatyrko, Vitalij A.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 40
Issue: 1
Year: 1999
Pages: 165-173
.
Category: math
.
Summary: The notion of locally $r$-incomparable families of compacta was introduced by K. Borsuk [KB]. In this paper we shall construct uncountable locally $r$-incomparable families of different types of finite-dimensional Cantor manifolds. (English)
Keyword: Cantor manifolds
Keyword: countable-dimensional
Keyword: weakly infinite-dimensional
Keyword: \newline strongly infinite-dimensional
MSC: 54F45
MSC: 57N99
idZBL: Zbl 1060.54510
idMR: MR1715209
.
Date available: 2009-01-08T18:50:35Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119070
.
Reference: [A-P] Aleksandrov P.S., Pasynkov B.A.: Introduction to Dimension Theory (in Russian).Moscow, 1973.
Reference: [KB] Borsuk K.: Theory of Retracts.PWN, Warszawa, 1969. Zbl 0153.52905
Reference: [PB] Borst P.: Classification of weakly infinite-dimensional spaces, Part I: A transfinite extension of the covering dimension.Fund.Math. 130 (1988), 1-25. MR 0964160
Reference: [Ch1] Chatyrko V.A.: Analogues of Cantor manifolds for transfinite dimensions (in Russian).Mat. Zametki 42 (1987), 115-119. MR 0910034
Reference: [Ch2] Chatyrko V.A.: On hereditarily indecomposable non-metrizable continua (in Russian).Mat. Zametki 46 (1989), 122-125. MR 1032919
Reference: [E] Engelking R.: Theory of Dimensions Finite and Infinite.Sigma Series in Pure Math. vol.10, Heldermann Verlag, 1995. Zbl 0872.54002, MR 1363947
Reference: [F1] Fedorchuk V.V.: Bicompacta with non-coinciding dimensionalities (in Russian).DAN SSSR 182 (1968), 275-277. MR 0234432
Reference: [F2] Fedorchuk V.V.: Mappings that do not reduce dimension (in Russian).DAN SSSR 185 (1969), 54-57.
Reference: [H1] Henderson D.W.: An infinite-dimensional compactum with no positive-dimensional compact subsets - a simpler construction.Amer. J. Math. 89 ((1967), 105-123. MR 0210072
Reference: [H2] Henderson D.W.: A lower bound for transfinite dimension.Fund. Math. 64 (1968), 167-173. Zbl 0167.51301, MR 0243496
Reference: [O] Olszewski W.: Cantor manifolds in the theory of transfinite dimension.Fund. Math. 145 (1994), 39-64. Zbl 0813.54025, MR 1295159
Reference: [EP] Pol E.: On infinite-dimensional Cantor manifolds.Topology Appl. 71 (1996), 265-276. Zbl 0864.54029, MR 1397945
Reference: [RP1] Pol R.: Questions in Dimension Theory, Open Problems in Topology.North-Holland, 1990. MR 1078654
Reference: [RP2] Pol R.: A weakly infinite-dimensional compactum which is not countable-dimensional.Proc. Amer. Math. Soc. 82 (1981), 634-636. Zbl 0469.54014, MR 0614892
Reference: [R-S-W] Rubin L.R., Schori R.M., Walsh J.J.: New dimension-theory techniques for constructing infinite-dimensional examples Gen. Topology Appl..10 (1979), 93-102. MR 0519716
Reference: [T] Tumarkin L.A.: On Cantorian manifolds of an infinite number of dimensions (in Russian).DAN SSSR 115 (1957), 244-246. MR 0091454
Reference: [T-H] Tsuda K., Hata M.: Fractional dimension function.Topology Proc. 18 (1993), 323-328. MR 1305140
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_40-1999-1_12.pdf 213.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo