Article
Keywords:
quasigroup; Latin square; Markov chain; doubly stochastic matrix; ergodic; superergodic; dripping faucet; group isotope; central quasigroup; semicentral quasigroup; $T$-quasigroup; left linear quasigroup
Summary:
A pointed quasigroup is said to be semicentral if it is principally isotopic to a group via a permutation on one side and a group automorphism on the other. Convex combinations of permutation matrices given by the one-sided multiplications in a semicentral quasigroup then yield doubly stochastic transition matrices of finite Markov chains in which the entropic behaviour at any time is independent of the initial state.
References:
                        
 Belyavskaja G.B., Tabarov A.H.: 
The nuclei and center of linear quasigroups (in Russian). Izv. Akad. Nauk Respub. Moldova Mat. 3 (1991), 37-42. 
MR 1174875 
 Belyavskaja G.B., Tabarov A.H.: 
One-sided T-quasigroups and irreducible balanced identities. Quasigroups Related Systems 1 (1994), 8-21. 
MR 1327942 
 Chein O., Pflugfelder H.O., Smith J.D.H. (eds.): 
Quasigroups and Loops: Theory and Applications. Heldermann Berlin (1990). 
MR 1125806 | 
Zbl 0719.20036 
 Feller W.: 
An Introduction to Probability Theory and its Applications, Volume I. Wiley New York, NY (1950). 
MR 0038583 
 Horibe Y.: 
On the increase of conditional entropy in Markov chains. in ``Transactions of the Tenth Prague Conference on Information Theory, Statistical Decision Functions, Random Processes, Volume A'', Academia, Prague, 1988, pp.391-396. 
MR 1136296 | 
Zbl 0707.60059 
 Ježek J., Kepka T.: 
Quasigroups, isotopic to a group. Comment. Math. Univ. Carolinae 16 (1975), 59-76. 
MR 0367103 
 Němec P., Kepka T.: 
T-quasigroups I, II. Acta Univ. Carolinae - Math. et Phys. 12 (1971), 1 39-49 and no. 2, 31-49. 
MR 0320206