Previous |  Up |  Next

Article

Title: On the semilinear multi-valued flow under constraints and the periodic problem (English)
Author: Bader, Ralf
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 41
Issue: 4
Year: 2000
Pages: 719-734
.
Category: math
.
Summary: $^{**}$ In the paper we will be concerned with the topological structure of the set of solutions of the initial value problem of a semilinear multi-valued system on a closed and convex set. Assuming that the linear part of the system generates a $C_0$-semigroup we show the $R_\delta $-structure of this set under certain natural boundary conditions. Using this result we obtain several criteria for the existence of periodic solutions for the semilinear system. As an application the problem of controlled heat transfer in an isotropic rigid body is considered. (English)
Keyword: multi-valued maps
Keyword: $C_0$-semigroup
Keyword: initial value problem under constraints
Keyword: $R_\delta $-sets
Keyword: periodic solutions
Keyword: equilibria
Keyword: control problem
MSC: 34A60
MSC: 34C25
MSC: 34C30
MSC: 34G25
MSC: 47D06
MSC: 49J24
MSC: 49K24
idZBL: Zbl 1057.34064
idMR: MR1800171
.
Date available: 2009-01-08T19:06:40Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119204
.
Reference: [1] Aubin J.-P., Frankowska H.: Set-valued Analysis.Birkhäuser, 1990. Zbl 1168.49014, MR 1048347
Reference: [2] Anichini G., Zecca P.: Multivalued differential equations in Banach spaces. An application in control theory.J. Optim. Theory and Appl. 21 (1977), 477-486. MR 0440144
Reference: [3] Bader R.: Fixed point theorems for compositions of set-valued maps with single-valued maps.Annales Universitatis Mariae Curie-Skłodowska, Vol. LI.2, Sectio A, Lublin, 1997, pp.29-41. Zbl 1012.47043, MR 1666164
Reference: [4] Bader R.: The periodic problem for semilinear differential inclusions in Banach spaces.Comment. Math. Univ. Carolinae 39 (1998), 671-684. Zbl 1060.34508, MR 1715457
Reference: [5] Ben-El-Mechaiekh H., Kryszewski W.: Equilibria of set-valued maps on nonconvex domains.Trans. Amer. Math. Soc. 349 (1997), 4159-4179. Zbl 0887.47040, MR 1401763
Reference: [6] Bothe D.: Multivalued differential equations on graphs and applications.Ph. D. dissertation, Universität Paderborn, 1992. Zbl 0789.34013, MR 1148288
Reference: [7] Conti G., Obukhovskii V., Zecca P.: On the topological structure of the solution set for a semilinear functional-differential inclusion in a Banach space.in: Topology in Nonlinear Analysis, K. Geba and L. Górniewicz (eds.), Polish Academy of Sciences, Institute of Mathematics, Banach Center Publications 35, Warszawa, 1996, pp.159-169. MR 1448435
Reference: [8] Deimling K.: Periodic solutions of differential equations in Banach spaces.Manuscripta Math. 24 (1978), 31-44. Zbl 0373.34032, MR 0499551
Reference: [9] Deimling K.: Multivalued Differential Equations.de Gruyter, Berlin-New York, 1992. Zbl 0820.34009, MR 1189795
Reference: [10] Diestel J.: Remarks on weak compactness in $L_1(\mu,X)$.Glasgow Math. J. 18 (1977), 87-91. Zbl 0342.46020
Reference: [11] Górniewicz L.: Topological approach to differential inclusions.in: Topological methods in differential equations and inclusions, A. Granas and M. Frigon (eds.), NATO ASI Series C 472, Kluwer Academic Publishers, 1995, pp.129-190. MR 1368672
Reference: [12] Hu S., Papageorgiou N.S.: On the topological regularity of the solution set of differential inclusions with constraints.J. Differential Equations 107 (1994), 280-290. Zbl 0796.34017, MR 1264523
Reference: [13] Hyman D.M.: On decreasing sequences of compact absolute retracts.Fund. Math. 64 (1969), 91-97. Zbl 0174.25804, MR 0253303
Reference: [14] Kamenskii M., Obukhovskii V., Zecca P.: Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces.de Gruyter, to appear. Zbl 0988.34001, MR 1831201
Reference: [15] Martin R.: Nonlinear Operators and Differential Equations in Banach Spaces.Wiley, New York, 1976. Zbl 0333.47023, MR 0492671
Reference: [16] Pavel N.: Invariant sets for a class of semi-linear equations of evolution.Nonlinear Anal. 1 (1977), 187-196. Zbl 0344.45001, MR 0637080
Reference: [17] Prüss, J.: Periodic solutions of semilinear evolution equations.Nonlinear Anal. 3 (1979), 601-612. MR 0541871
Reference: [18] Shuzhong Shi.: Viability theorems for a class of differential-operator inclusions.J. Differential Equations 79 (1989), 232-257. Zbl 0694.34011, MR 1000688
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_41-2000-4_6.pdf 275.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo