Title:
|
Two spaces homeomorphic to $Seq(p)$ (English) |
Author:
|
Vaughan, Jerry E. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
42 |
Issue:
|
1 |
Year:
|
2001 |
Pages:
|
209-218 |
. |
Category:
|
math |
. |
Summary:
|
We consider the spaces called $Seq(u_t)$, constructed on the set $Seq$ of all finite sequences of natural numbers using ultrafilters $u_t$ to define the topology. For such spaces, we discuss continuity, homogeneity, and rigidity. We prove that $S(u_t)$ is homogeneous if and only if all the ultrafilters $u_t$ have the same Rudin-Keisler type. We proved that a space of Louveau, and in certain cases, a space of Sirota, are homeomorphic to $Seq(p)$ (i.e., $u_t = p$ for all $t\in Seq$). It follows that for a Ramsey ultrafilter $p$, $Seq(p)$ is a topological group. (English) |
Keyword:
|
ultrafilters |
Keyword:
|
continuity |
Keyword:
|
homeomorphisms |
Keyword:
|
homogeneous |
Keyword:
|
rigid |
Keyword:
|
topological group |
Keyword:
|
Ramsey ultrafilters |
Keyword:
|
selective ultrafilters |
MSC:
|
54A35 |
MSC:
|
54C05 |
MSC:
|
54D80 |
MSC:
|
54G05 |
MSC:
|
54H11 |
idZBL:
|
Zbl 1053.54033 |
idMR:
|
MR1825385 |
. |
Date available:
|
2009-01-08T19:09:21Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119236 |
. |
Reference:
|
[1] Arhangel'skii A.V., Franklin S.P.: Ordinal invariants for topological spaces.Michigan Math. J. 15 (1968), 313-320. MR 0240767 |
Reference:
|
[2] Comfort W.W., Negrepontis S.: The Theory of Ultrafilters.Springer-Verlag, New York, 1974. Zbl 0298.02004, MR 0396267 |
Reference:
|
[3] van Douwen E.K.: Countable homogeneous spaces and countable groups.in General Topology and its Relations to Modern Analysis and Algebra VI, Proc. Sixth Prague Topological Symposium, 1986, Z. Frolík (ed.); Heldermann Verlag, Berlin, 1988, pp. 135-154. Zbl 0648.54016, MR 0952601 |
Reference:
|
[4] Dow A., Gubbi A.V., Szymanski A.: Rigid Stone spaces within ZFC.Proc. Amer. Math. Soc. 102 (1988), 745-748. MR 0929014 |
Reference:
|
[5] Dow A., Vaughan J.E.: Accessible and biaccessible points in contrasequential spaces.Annals of the New York Academy of Sciences, Vol 704 (1993) 92-102. Zbl 0814.54017, MR 1277846 |
Reference:
|
[6] El'kin A.G.: Some topologies on an infinite set.Uspekhi Mat. Nauk 35:3 (1980), 179-183; English transl.: Russian Mat. Surveys 35:3 (1980) 225-230. Zbl 0461.54030, MR 0580644 |
Reference:
|
[7] Jech T.: Set Theory.Academic Press, New York, 1978. Zbl 1007.03002, MR 0506523 |
Reference:
|
[8] Kannan V., Rajagopalan M.: Constructions and applications of rigid spaces.Advances in Mathematics 29 (1978), 89-130. Zbl 0424.54029, MR 0501093 |
Reference:
|
[9] Kato A.: A new construction of extremally disconnected topologies.Topology Appl. 58 (1994), 1-16. Zbl 0804.54030, MR 1280706 |
Reference:
|
[10] Levy R.: Countable spaces without points of first countability.Pacific J. Math. 70 (1977), 391-399. Zbl 0343.54005, MR 0482613 |
Reference:
|
[11] Lindgren W.F., Szymanski A.A.: A non-pseudocompact product of countably compact spaces via Seq.Proc. Amer. Math. Soc. 125 (1997), 3741-3746. Zbl 0891.54010, MR 1415350 |
Reference:
|
[12] Louveau A.: Sur un article de S. Sirota.Bull. Sc. Math., 2e série 96 (1972), 3-7. Zbl 0228.54032, MR 0308326 |
Reference:
|
[13] van Mill J.: An introduction to $\betaømega$.Handbook of Set-theoretic Topology, K. Kunen, J. Vaughan, Eds., North-Holland, Amsterdam, 1984. MR 0776630 |
Reference:
|
[14] Shelah S., Rudin M.E.: Unordered types of ultrafilters.Topology Proc. 3 (1978), 199-204. MR 0540490 |
Reference:
|
[15] Sirota S.M.: The product of topological groups and extremally disconnectedness.Mat. Sbornik 79 (121) (1969), 2 169-18. MR 0242988 |
Reference:
|
[16] Szymanski A.: Products and measurable cardinals.Rend. Circ. Mat. Palermo (2) Suppl. No. 11, (1985), 105-112 (1987). Zbl 0635.54010, MR 0897976 |
Reference:
|
[17] Trnková V.: Homeomorphisms of products of countable spaces.Proc. Amer. Math. Soc. (1982). MR 0682479 |
Reference:
|
[18] Trnková V.: Homeomorphisms of products of Boolean algebras.Fund. Math 126 (1985), 46-61. MR 0817079 |
. |