Previous |  Up |  Next

Article

Title: Two spaces homeomorphic to $Seq(p)$ (English)
Author: Vaughan, Jerry E.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 42
Issue: 1
Year: 2001
Pages: 209-218
.
Category: math
.
Summary: We consider the spaces called $Seq(u_t)$, constructed on the set $Seq$ of all finite sequences of natural numbers using ultrafilters $u_t$ to define the topology. For such spaces, we discuss continuity, homogeneity, and rigidity. We prove that $S(u_t)$ is homogeneous if and only if all the ultrafilters $u_t$ have the same Rudin-Keisler type. We proved that a space of Louveau, and in certain cases, a space of Sirota, are homeomorphic to $Seq(p)$ (i.e., $u_t = p$ for all $t\in Seq$). It follows that for a Ramsey ultrafilter $p$, $Seq(p)$ is a topological group. (English)
Keyword: ultrafilters
Keyword: continuity
Keyword: homeomorphisms
Keyword: homogeneous
Keyword: rigid
Keyword: topological group
Keyword: Ramsey ultrafilters
Keyword: selective ultrafilters
MSC: 54A35
MSC: 54C05
MSC: 54D80
MSC: 54G05
MSC: 54H11
idZBL: Zbl 1053.54033
idMR: MR1825385
.
Date available: 2009-01-08T19:09:21Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119236
.
Reference: [1] Arhangel'skii A.V., Franklin S.P.: Ordinal invariants for topological spaces.Michigan Math. J. 15 (1968), 313-320. MR 0240767
Reference: [2] Comfort W.W., Negrepontis S.: The Theory of Ultrafilters.Springer-Verlag, New York, 1974. Zbl 0298.02004, MR 0396267
Reference: [3] van Douwen E.K.: Countable homogeneous spaces and countable groups.in General Topology and its Relations to Modern Analysis and Algebra VI, Proc. Sixth Prague Topological Symposium, 1986, Z. Frolík (ed.); Heldermann Verlag, Berlin, 1988, pp. 135-154. Zbl 0648.54016, MR 0952601
Reference: [4] Dow A., Gubbi A.V., Szymanski A.: Rigid Stone spaces within ZFC.Proc. Amer. Math. Soc. 102 (1988), 745-748. MR 0929014
Reference: [5] Dow A., Vaughan J.E.: Accessible and biaccessible points in contrasequential spaces.Annals of the New York Academy of Sciences, Vol 704 (1993) 92-102. Zbl 0814.54017, MR 1277846
Reference: [6] El'kin A.G.: Some topologies on an infinite set.Uspekhi Mat. Nauk 35:3 (1980), 179-183; English transl.: Russian Mat. Surveys 35:3 (1980) 225-230. Zbl 0461.54030, MR 0580644
Reference: [7] Jech T.: Set Theory.Academic Press, New York, 1978. Zbl 1007.03002, MR 0506523
Reference: [8] Kannan V., Rajagopalan M.: Constructions and applications of rigid spaces.Advances in Mathematics 29 (1978), 89-130. Zbl 0424.54029, MR 0501093
Reference: [9] Kato A.: A new construction of extremally disconnected topologies.Topology Appl. 58 (1994), 1-16. Zbl 0804.54030, MR 1280706
Reference: [10] Levy R.: Countable spaces without points of first countability.Pacific J. Math. 70 (1977), 391-399. Zbl 0343.54005, MR 0482613
Reference: [11] Lindgren W.F., Szymanski A.A.: A non-pseudocompact product of countably compact spaces via Seq.Proc. Amer. Math. Soc. 125 (1997), 3741-3746. Zbl 0891.54010, MR 1415350
Reference: [12] Louveau A.: Sur un article de S. Sirota.Bull. Sc. Math., 2e série 96 (1972), 3-7. Zbl 0228.54032, MR 0308326
Reference: [13] van Mill J.: An introduction to $\betaømega$.Handbook of Set-theoretic Topology, K. Kunen, J. Vaughan, Eds., North-Holland, Amsterdam, 1984. MR 0776630
Reference: [14] Shelah S., Rudin M.E.: Unordered types of ultrafilters.Topology Proc. 3 (1978), 199-204. MR 0540490
Reference: [15] Sirota S.M.: The product of topological groups and extremally disconnectedness.Mat. Sbornik 79 (121) (1969), 2 169-18. MR 0242988
Reference: [16] Szymanski A.: Products and measurable cardinals.Rend. Circ. Mat. Palermo (2) Suppl. No. 11, (1985), 105-112 (1987). Zbl 0635.54010, MR 0897976
Reference: [17] Trnková V.: Homeomorphisms of products of countable spaces.Proc. Amer. Math. Soc. (1982). MR 0682479
Reference: [18] Trnková V.: Homeomorphisms of products of Boolean algebras.Fund. Math 126 (1985), 46-61. MR 0817079
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_42-2001-1_17.pdf 229.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo