Previous |  Up |  Next

Article

Title: Relative exact covers (English)
Author: Bican, Ladislav
Author: Torrecillas, Blas
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 42
Issue: 4
Year: 2001
Pages: 601-607
.
Category: math
.
Summary: Recently Rim and Teply [11] found a necessary condition for the existence of $\sigma$-torsionfree covers with respect to a given hereditary torsion theory for the category $R$-mod. This condition uses the class of $\sigma$-exact modules; i.e. the $\sigma$-torsionfree modules for which every its $\sigma$-torsionfree homomorphic image is $\sigma$-injective. In this note we shall show that the existence of $\sigma$-torsionfree covers implies the existence of $\sigma$-exact covers, and we shall investigate some sufficient conditions for the converse. (English)
Keyword: precover
Keyword: cover
Keyword: hereditary torsion theory $\sigma $
Keyword: $\sigma $-injective module
Keyword: $\sigma $-exact module
Keyword: $\sigma $-pure submodule
MSC: 16D50
MSC: 16D90
MSC: 16S90
MSC: 18E40
idZBL: Zbl 1068.16039
idMR: MR1883369
.
Date available: 2009-01-08T19:16:43Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119276
.
Reference: [1] Anderson F.W., Fuller K.R.: Rings and Categories of Modules.Graduate Texts in Mathematics, vol.13 Springer-Verlag (1974). Zbl 0301.16001, MR 0417223
Reference: [2] Bican L., El Bashir R., Enochs E.: All modules have flat covers.Bull. London Math. Soc. 33 (2001), 385-390. Zbl 1029.16002, MR 1832549
Reference: [3] Bican L., Kepka T., Němec P.: Rings, Modules, and Preradicals.Marcel Dekker New York (1982). MR 0655412
Reference: [4] Bican L., Torrecillas B.: On covers.J. Algebra 236 (2001), 645-650. Zbl 0973.16002, MR 1813494
Reference: [5] Bican L., Torrecillas B.: Precovers.to appear. Zbl 1016.16003, MR 1962008
Reference: [6] Bican L., Torrecillas B.: On the existence of relative injective covers.to appear. Zbl 1006.16006, MR 1905180
Reference: [7] Enochs E.: Injective and flat covers, envelopes and resolvents.Israel J. Math. 39 (1981), 189-209. Zbl 0464.16019, MR 0636889
Reference: [8] García Rozas J.R., Torrecillas B.: On the existence of covers by injective modules relative to a torsion theory.Comm. Algebra 24 (1996), 1737-1748. MR 1386494
Reference: [9] Golan J.: Torsion Theories.Pitman Monographs and Surveys in Pure an Applied Mathematics, 29 Longman Scientific and Technical (1986). Zbl 0657.16017, MR 0880019
Reference: [10] Rada J., Saorín M.: Rings characterized by (pre)envelopes and (pre)covers of their modules.Comm. Algebra 26 (1998), 899-912. Zbl 0908.16003, MR 1606190
Reference: [11] Rim S.H., Teply M.L.: On coverings of modules.to appear. Zbl 0985.16017, MR 1791327
Reference: [12] Teply M.: Torsion-free covers II.Israel J. Math. 23 (1976), 132-136. Zbl 0321.16014, MR 0417245
Reference: [13] Torrecillas B.: T-torsionfree T-injective covers.Comm. Algebra 12 (1984), 2707-2726. MR 0757788
Reference: [14] Xu J.: Flat covers of modules.Lecture Notes in Mathematics, 1634, Springer Verlag Berlin-Heidelberg-New York (1996). Zbl 0860.16002, MR 1438789
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_42-2001-4_1.pdf 205.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo