Previous |  Up |  Next

Article

Title: Characterizations of almost transitive superreflexive Banach spaces (English)
Author: Guerrero, Julio Becerra
Author: Palacios, Angel Rodriguez
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 42
Issue: 4
Year: 2001
Pages: 629-636
.
Category: math
.
Summary: Almost transitive superreflexive Banach spaces have been considered in [7] (see also [4] and [6]), where it is shown that such spaces are uniformly convex and uniformly smooth. We prove that convex transitive Banach spaces are either almost transitive and superreflexive (hence uniformly smooth) or extremely rough. The extreme roughness of a Banach space $X$ means that, for every element $u$ in the unit sphere of $X$, we have $$ \limsup _{\Vert h\Vert \rightarrow 0} \frac{\Vert u+h\Vert +\Vert u-h\Vert -2}{\Vert h\Vert}=2. $$ We note that, in general, the property of convex transitivity for a Banach space is weaker than that of almost transitivity. (English)
Keyword: convex transitive
Keyword: almost transitive
Keyword: superreflexive
Keyword: uniformly smooth
Keyword: rough norm
MSC: 46B04
MSC: 46B10
MSC: 46B22
idZBL: Zbl 1150.46003
idMR: MR1883371
.
Date available: 2009-01-08T19:16:56Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119278
.
Reference: [1] Aparicio A., Oca na F., Paya R., Rodriguez A.: A non-smooth extension of Fréchet differentiability of the norm with applications to numerical ranges.Glasgow Math. J. 28 (1986), 121-137. MR 0848419
Reference: [2] Becerra J., Rodriguez A.: The geometry of convex transitive Banach spaces.Bull. London Math. Soc. 31 (1999), 323-331. Zbl 0921.46006, MR 1673411
Reference: [3] Bourgin R.D.: Geometric aspects of convex sets with the Radon-Nikodym property.Lecture Notes in Mathematics 993, Springer-Verlag, Berlin, 1983. Zbl 0512.46017, MR 0704815
Reference: [4] Cabello F.: Maximal symmetric norms on Banach spaces.Proc. Roy. Irish Acad. 98A (1998), 121-130. Zbl 0941.46008, MR 1759425
Reference: [5] Day M.M.: Normed linear spaces.Ergebnisse der Mathematik und ihrer Grenzgebiete 21, Springer-Verlag, Berlin, 1973. Zbl 0583.00016, MR 0344849
Reference: [6] Deville R., Godefroy G., Zizler V.: Smoothness and renormings in Banach spaces.Pitman Monographs and Surveys in Pure and Applied Math. 64, New York. 1993. Zbl 0782.46019, MR 1211634
Reference: [7] Finet C.: Uniform convexity properties of norms on superreflexive Banach spaces.Israel J. Math. 53 (1986), 81-92. MR 0861899
Reference: [8] Franchetti C., Paya R.: Banach spaces with strongly subdifferentiable norm.Bolletino U.M.I. 7-B (1993), 45-70. Zbl 0779.46021, MR 1216708
Reference: [9] Giles J.R., Gregory D.A., Sims B.: Characterisation of normed linear spaces with Mazur's intersection property.Bull. Austral. Math. Soc. 18 (1978), 105-123. Zbl 0373.46028, MR 0493266
Reference: [10] Kalton N.J., Wood G.V.: Orthonormal systems in Banach spaces and their applications.Math. Proc. Cambridge Philos. Soc. 79 (1976), 493-510. Zbl 0327.46022, MR 0402471
Reference: [11] Skorik A., Zaidenberg M.: On isometric reflexions in Banach spaces.Math. Physics, Analysis, Geometry 4 (1997), 212-247. MR 1484353
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_42-2001-4_3.pdf 203.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo