Previous |  Up |  Next

Article

Title: A note on monotone countable paracompactness (English)
Author: Ying, Ge
Author: Good, Chris
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 42
Issue: 4
Year: 2001
Pages: 771-778
.
Category: math
.
Summary: We show that a space is MCP (monotone countable paracompact) if and only if it has property $(*)$, introduced by Teng, Xia and Lin. The relationship between MCP and stratifiability is highlighted by a similar characterization of stratifiability. Using this result, we prove that MCP is preserved by both countably biquotient closed and peripherally countably compact closed mappings, from which it follows that both strongly Fréchet spaces and q-space closed images of MCP spaces are MCP. Some results on closed images of wN spaces are also noted. (English)
Keyword: monotone countable paracompactness
Keyword: MCP
Keyword: monotone countable metacompactness
Keyword: MCM
Keyword: $\beta$-space
Keyword: wN-space
Keyword: g-functions
Keyword: stratifiability
Keyword: countably biquotient mapping
Keyword: peripherally countably compact mapping
Keyword: (quasi-)perfect mapping
MSC: 54C10
MSC: 54D18
MSC: 54D20
MSC: 54E20
MSC: 54E30
idZBL: Zbl 1090.54504
idMR: MR1883385
.
Date available: 2009-01-08T19:18:45Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119292
.
Reference: [1] Good C., Knight R.W., Stares I.S.: Monotone countable paracompactness.Topology Appl. 101 (2000), 281-298. Zbl 0938.54026, MR 1733809
Reference: [2] Gruenhage G.: Generalized metric spaces.in Handbook of Set-theoretic Topology, K. Kunen and J.E. Vaughan, eds., North-Holland, Amsterdam, 1984. Zbl 0794.54034, MR 0776629
Reference: [3] Heath R.W.: On open mappings and certain spaces satisfying the first countability axiom.Fund. Math. 57 (1965), 91-96. Zbl 0134.41802, MR 0179763
Reference: [4] Hodel R.E.: Spaces defined by sequences of open covers which guarantee that certain sequences have cluster points.Proceedings of the University of Houston Point Set Topology Conference (Houston, Tex., 1971), 1971, pp.105-114. Zbl 0242.54027, MR 0407810
Reference: [5] Hodel R.E.: Moore spaces and $w\Delta$-spaces.Pacific J. Math. 38 (1971), 641-652. Zbl 0219.54024, MR 0307169
Reference: [6] Lin S.: Generalized Metric Spaces and Mappings.Chinese Science Press, Beijing, 1995. MR 1375020
Reference: [7] Lutzer D.J.: Semimetrizable and stratifiable spaces.Topology Appl. 1 (1971), 43-48. Zbl 0211.25704, MR 0296893
Reference: [8] Michael E.: A note on closed maps and compact sets.Israel J. Math. 2 (1964), 173-176. Zbl 0136.19303, MR 0177396
Reference: [9] Pan C.: Monotonically $cp$ spaces.Questions Answers Gen. Topology 15 (1997), 24-32. Zbl 0876.54017, MR 1442507
Reference: [10] Siwiec F.: Sequence-covering and countably bi-quotient mappings.Topology Appl. 1 (1971), 143-154. Zbl 0218.54016, MR 0288737
Reference: [11] Tanaka Y.: On open finite-to-one maps.Bull. Tokyo Gakugei Univ., Ser. IV 25 (1973), 1-13. Zbl 0355.54008, MR 0346730
Reference: [12] Teng H., Xia S., Lin S.: Closed images of some generalized countably compact spaces.Chinese Ann. Math. Ser A 10 (1989), 554-558. MR 1039444
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_42-2001-4_17.pdf 198.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo