Title:
|
Quasiharmonic fields and Beltrami operators (English) |
Author:
|
Capone, Claudia |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
43 |
Issue:
|
2 |
Year:
|
2002 |
Pages:
|
363-377 |
. |
Category:
|
math |
. |
Summary:
|
A quasiharmonic field is a pair $\Cal{F} = [B,E]$ of vector fields satisfying $\operatorname{div} B=0$, $\operatorname{curl} E=0$, and coupled by a distorsion inequality. For a given $\Cal F$, we construct a matrix field $\Cal A=\Cal A[B,E]$ such that ${\Cal A} E=B$. This remark in particular shows that the theory of quasiharmonic fields is equivalent (at least locally) to that of elliptic PDEs. Here we stress some properties of our operator $\Cal A[B,E]$ and find their applications to the study of regularity of solutions to elliptic PDEs, and to some questions of G-convergence. (English) |
Keyword:
|
quasiharmonic fields |
Keyword:
|
Beltrami operator |
Keyword:
|
elliptic partial differential equations |
Keyword:
|
G-convergence |
MSC:
|
30C65 |
MSC:
|
35B40 |
MSC:
|
35B45 |
MSC:
|
35D10 |
MSC:
|
35J20 |
MSC:
|
35J60 |
MSC:
|
47B99 |
MSC:
|
47F05 |
idZBL:
|
Zbl 1069.35024 |
idMR:
|
MR1922134 |
. |
Date available:
|
2009-01-08T19:22:47Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119326 |
. |
Reference:
|
[1] Astala K.: Recent Connections and Applications of Planar Quasiconformal Mappings.Progr. Math. 168 36-51 (1998). Zbl 0908.30019, MR 1645796 |
Reference:
|
[2] De Giorgi E.: Un esempio di estremali discontinue per un problema variazionale di tipo ellittico.Boll. U.M.I. 4 (1968), 135-137. MR 0227827 |
Reference:
|
[3] De Giorgi E., Spagnolo S.: Sulla convergenza degli integrali dell'energia per operatori ellittici del secondo ordine.Boll. U.M.I. 8 (1973), 391-411. Zbl 0274.35002, MR 0348255 |
Reference:
|
[4] Formica M.R.: On the $\Gamma$-convergence of Laplace-Beltrami Operators in the plane.Ann. Acad. Sci. Fenn. Math. 25 (2000), 423-438. Zbl 0955.30016, MR 1762427 |
Reference:
|
[5] Francfort G.A., Murat F.: Optimal bounds for conduction in two-dimensional, two-phase, Anisotropic media.Non-classical continuum mechanics, R.J. Knops and A.A. Lacey, Eds., London Mathematical Society Lecture Note Series 122, Cambridge, 1987, pp.197-212. Zbl 0668.73018, MR 0926503 |
Reference:
|
[6] Keller J.B.: A theorem on the conductivity of a composite medium.J. Math. Phys. 5 (1964), 548-549. Zbl 0129.44001, MR 0161559 |
Reference:
|
[7] Koshelev A.I.: Regularity of solutions of quasilinear elliptic systems.Engl.trans.: Russian Math. Survey 33 (1978), 1-52. MR 0510669 |
Reference:
|
[8] Iwaniec T., Sbordone C.: Quasiharmonic fields.Ann. Inst. H. Poincaré-AN 18.5 (2001), 519-572. Zbl 1068.30011, MR 1849688 |
Reference:
|
[9] John O., Malý J., Stará J.: Nowhere continuous solutions to elliptic systems.Comment. Math. Univ. Carolinae 30.1 (1989), 33-43. MR 0995699 |
Reference:
|
[10] Leonetti F., Nesi V.: Quasiconformal solutions and a conjecture of Milton.J. Math. Pures Appl. 76 (1997), 109-124. MR 1432370 |
Reference:
|
[11] Liusterinik, Sobolev: Elements of Functional Analysis.(1965), Frederick Ungar Publishing Company London. |
Reference:
|
[12] Marino A., Spagnolo S.: Un tipo di approssimazione dell'operatore $\sum D_i{a_ij}D_j$ con operatori $D_j(b D_j)$.Ann. Scu. Norm. Sup. Pisa 23 (1969), 657-673. MR 0278128 |
Reference:
|
[13] Meyers N.: An $L^p$-estimate for the gradient of solutions of second order elliptic divergence equations.Ann. Scu. Norm. Pisa 17 (1963), 189-206. MR 0159110 |
Reference:
|
[14] Milton G.W.: Modelling the properties of composites by laminates.in Homogenization and effective moduli of materials and media, Ericksen, Kinderleher, Kohn, Lions, Eds., IMA volumes in mathematics and its applications 1, Springer-Verlag, New York, 1986, pp.150-174. Zbl 0631.73011, MR 0859415 |
Reference:
|
[15] Morrey: On the solutions of quasi-linear elliptic partial differential equations.Trans. Amer. Math. Soc. 43 (1938), 126-166. Zbl 0018.40501, MR 1501936 |
Reference:
|
[16] Murat F.: Compacite par Compensation.Ann. Scu. Norm. Pisa 5 (1978), 489-507. Zbl 0399.46022, MR 0506997 |
Reference:
|
[17] Murat F.: H-convergence.Seminaire d'Analyse Fonctionelle et Numerique, University of Alger, 1977/78. Zbl 0920.35019 |
Reference:
|
[18] Souček J.: Singular solution to linear elliptic systems.Comment. Math. Univ. Carolinae 25 (1984), 273-281. MR 0768815 |
Reference:
|
[19] Spagnolo S.: Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche.Ann. Scu. Norm. Sup. Pisa 22 (1968), 571-597. MR 0240443 |
Reference:
|
[20] Spagnolo S.: Some convergence problems.Sympos. Math. 18 (1976), 391-397. Zbl 0332.46020, MR 0509184 |
Reference:
|
[21] Tartar L.: Homogeneisation et compacite par compensation.Cours Peccot, College de France, 1977. Zbl 0406.35055 |
Reference:
|
[22] Tartar L.: Compensated Compactness and Applications to Partial Differential Equations.ed. by R.J. Knops, Pitman, London, Research Notes in Mathematics, Nonlinear Analysis and Mechanics: Heriot-Watt Symposium IV (1979), no. 39, 136-212. Zbl 0437.35004, MR 0584398 |
Reference:
|
[23] Tartar L.: Convergence d'operateurs differentiels.Analisi Convessa Appl., Roma (1974), 101-104. |
. |