Previous |  Up |  Next

Article

Title: Quasiharmonic fields and Beltrami operators (English)
Author: Capone, Claudia
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 43
Issue: 2
Year: 2002
Pages: 363-377
.
Category: math
.
Summary: A quasiharmonic field is a pair $\Cal{F} = [B,E]$ of vector fields satisfying $\operatorname{div} B=0$, $\operatorname{curl} E=0$, and coupled by a distorsion inequality. For a given $\Cal F$, we construct a matrix field $\Cal A=\Cal A[B,E]$ such that ${\Cal A} E=B$. This remark in particular shows that the theory of quasiharmonic fields is equivalent (at least locally) to that of elliptic PDEs. Here we stress some properties of our operator $\Cal A[B,E]$ and find their applications to the study of regularity of solutions to elliptic PDEs, and to some questions of G-convergence. (English)
Keyword: quasiharmonic fields
Keyword: Beltrami operator
Keyword: elliptic partial differential equations
Keyword: G-convergence
MSC: 30C65
MSC: 35B40
MSC: 35B45
MSC: 35D10
MSC: 35J20
MSC: 35J60
MSC: 47B99
MSC: 47F05
idZBL: Zbl 1069.35024
idMR: MR1922134
.
Date available: 2009-01-08T19:22:47Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119326
.
Reference: [1] Astala K.: Recent Connections and Applications of Planar Quasiconformal Mappings.Progr. Math. 168 36-51 (1998). Zbl 0908.30019, MR 1645796
Reference: [2] De Giorgi E.: Un esempio di estremali discontinue per un problema variazionale di tipo ellittico.Boll. U.M.I. 4 (1968), 135-137. MR 0227827
Reference: [3] De Giorgi E., Spagnolo S.: Sulla convergenza degli integrali dell'energia per operatori ellittici del secondo ordine.Boll. U.M.I. 8 (1973), 391-411. Zbl 0274.35002, MR 0348255
Reference: [4] Formica M.R.: On the $\Gamma$-convergence of Laplace-Beltrami Operators in the plane.Ann. Acad. Sci. Fenn. Math. 25 (2000), 423-438. Zbl 0955.30016, MR 1762427
Reference: [5] Francfort G.A., Murat F.: Optimal bounds for conduction in two-dimensional, two-phase, Anisotropic media.Non-classical continuum mechanics, R.J. Knops and A.A. Lacey, Eds., London Mathematical Society Lecture Note Series 122, Cambridge, 1987, pp.197-212. Zbl 0668.73018, MR 0926503
Reference: [6] Keller J.B.: A theorem on the conductivity of a composite medium.J. Math. Phys. 5 (1964), 548-549. Zbl 0129.44001, MR 0161559
Reference: [7] Koshelev A.I.: Regularity of solutions of quasilinear elliptic systems.Engl.trans.: Russian Math. Survey 33 (1978), 1-52. MR 0510669
Reference: [8] Iwaniec T., Sbordone C.: Quasiharmonic fields.Ann. Inst. H. Poincaré-AN 18.5 (2001), 519-572. Zbl 1068.30011, MR 1849688
Reference: [9] John O., Malý J., Stará J.: Nowhere continuous solutions to elliptic systems.Comment. Math. Univ. Carolinae 30.1 (1989), 33-43. MR 0995699
Reference: [10] Leonetti F., Nesi V.: Quasiconformal solutions and a conjecture of Milton.J. Math. Pures Appl. 76 (1997), 109-124. MR 1432370
Reference: [11] Liusterinik, Sobolev: Elements of Functional Analysis.(1965), Frederick Ungar Publishing Company London.
Reference: [12] Marino A., Spagnolo S.: Un tipo di approssimazione dell'operatore $\sum D_i{a_ij}D_j$ con operatori $D_j(b D_j)$.Ann. Scu. Norm. Sup. Pisa 23 (1969), 657-673. MR 0278128
Reference: [13] Meyers N.: An $L^p$-estimate for the gradient of solutions of second order elliptic divergence equations.Ann. Scu. Norm. Pisa 17 (1963), 189-206. MR 0159110
Reference: [14] Milton G.W.: Modelling the properties of composites by laminates.in Homogenization and effective moduli of materials and media, Ericksen, Kinderleher, Kohn, Lions, Eds., IMA volumes in mathematics and its applications 1, Springer-Verlag, New York, 1986, pp.150-174. Zbl 0631.73011, MR 0859415
Reference: [15] Morrey: On the solutions of quasi-linear elliptic partial differential equations.Trans. Amer. Math. Soc. 43 (1938), 126-166. Zbl 0018.40501, MR 1501936
Reference: [16] Murat F.: Compacite par Compensation.Ann. Scu. Norm. Pisa 5 (1978), 489-507. Zbl 0399.46022, MR 0506997
Reference: [17] Murat F.: H-convergence.Seminaire d'Analyse Fonctionelle et Numerique, University of Alger, 1977/78. Zbl 0920.35019
Reference: [18] Souček J.: Singular solution to linear elliptic systems.Comment. Math. Univ. Carolinae 25 (1984), 273-281. MR 0768815
Reference: [19] Spagnolo S.: Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche.Ann. Scu. Norm. Sup. Pisa 22 (1968), 571-597. MR 0240443
Reference: [20] Spagnolo S.: Some convergence problems.Sympos. Math. 18 (1976), 391-397. Zbl 0332.46020, MR 0509184
Reference: [21] Tartar L.: Homogeneisation et compacite par compensation.Cours Peccot, College de France, 1977. Zbl 0406.35055
Reference: [22] Tartar L.: Compensated Compactness and Applications to Partial Differential Equations.ed. by R.J. Knops, Pitman, London, Research Notes in Mathematics, Nonlinear Analysis and Mechanics: Heriot-Watt Symposium IV (1979), no. 39, 136-212. Zbl 0437.35004, MR 0584398
Reference: [23] Tartar L.: Convergence d'operateurs differentiels.Analisi Convessa Appl., Roma (1974), 101-104.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_43-2002-2_14.pdf 245.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo