Previous |  Up |  Next

Article

Title: Locally solid topologies on spaces of vector-valued continuous functions (English)
Author: Nowak, Marian
Author: Rzepka, Aleksandra
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 43
Issue: 3
Year: 2002
Pages: 473-483
.
Category: math
.
Summary: Let $X$ be a completely regular Hausdorff space and $E$ a real normed space. We examine the general properties of locally solid topologies on the space $C_b(X,E)$ of all $E$-valued continuous and bounded functions from $X$ into $E$. The mutual relationship between locally solid topologies on $C_b(X,E)$ and $C_b(X)$ $(=C_b(X,\Bbb R))$ is considered. In particular, the mutual relationship between strict topologies on $C_b(X)$ and $C_b(X,E)$ is established. It is shown that the strict topology $\beta _\sigma(X,E)$ (respectively $\beta _\tau(X,E)$) is the finest $\sigma $-Dini topology (respectively Dini topology) on $C_b(X,E)$. A characterization of $\sigma $-Dini and Dini topologies on $C_b(X,E)$ in terms of their topological duals is given. (English)
Keyword: vector-valued continuous functions
Keyword: strict topologies
Keyword: locally solid topologies
Keyword: Dini topologies
MSC: 46A03
MSC: 46E05
MSC: 46E10
MSC: 46E40
MSC: 47A70
idZBL: Zbl 1068.46023
idMR: MR1920522
.
Date available: 2009-01-08T19:24:00Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119336
.
Reference: [A] Aguayo-Garrido J.: Strict topologies on spaces of continuous functions and $u$-additive measure spaces.J. Math. Anal. Appl. 220 (1998), 77-89. Zbl 0914.46031, MR 1612071
Reference: [AB] Aliprantis C.D., Burkinshaw O.: Locally Solid Topologies.Academic Press, New York, San Francisco, London, 1978. Zbl 0436.46009, MR 0493242
Reference: [F] Fontenot R.A.: Strict topologies for vector-valued functions.Canad. J. Math. 26 (1974), 841-853. Zbl 0259.46037, MR 0348463
Reference: [K$_1$] Katsaras A.K.: Spaces of vector measures.Trans. Amer. Math. Soc. 206 (1975), 313-328. Zbl 0275.46029, MR 0365111
Reference: [K$_2$] Katsaras A.K.: Some locally convex spaces of continuous vector-valued functions over a completely regular space and their duals.Trans. Amer. Math. Soc. 216 (1976), 367-387. Zbl 0317.46031, MR 0390733
Reference: [K$_3$] Katsaras A.K.: Locally convex topologies on spaces of continuous vector functions.Math. Nachr. 71 (1976), 211-226. Zbl 0281.46032, MR 0458143
Reference: [Ku] Khurana S.S.: Topologies on spaces of vector-valued continuous functions.Trans. Amer. Math. Soc. 241 (1978), 195-211. Zbl 0362.46035, MR 0492297
Reference: [KuO] Khurana S.S., Othman S.I.: Grothendieck measures.J. London Math. Soc. (2) 39 (1989), 481-486. Zbl 0681.46030, MR 1002460
Reference: [KuV$_1$] Khurana S.S., Vielma J.E.: Strict topology and perfect measures.Czechoslovak Math. J. 40 (1990), 1-7. Zbl 0711.28002, MR 1032358
Reference: [KuV$_2$] Khurana S.S., Vielma J.E.: Weak sequential convergence and weak compactness in spaces of vector-valued continuous functions.J. Math. Anal. Appl. 195 (1995), 251-260. Zbl 0854.46032, MR 1352821
Reference: [S] Sentilles F.D.: Bounded continous functions on a completely regular space.Trans. Amer. Math. Soc. 168 (1972), 311-336. MR 0295065
Reference: [W] Wheeler R.F.: Survey of Baire measures and strict topologies.Exposition Math. 2 (1983), 97-190. Zbl 0522.28009, MR 0710569
Reference: [W$_1$] Wheeler R.F.: The strict topology, separable measures, and paracompactness.Pacific J. Math. 47 (1973), 287-302. Zbl 0244.46028, MR 0341047
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_43-2002-3_7.pdf 232.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo