Title:
|
Locally solid topologies on spaces of vector-valued continuous functions (English) |
Author:
|
Nowak, Marian |
Author:
|
Rzepka, Aleksandra |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
43 |
Issue:
|
3 |
Year:
|
2002 |
Pages:
|
473-483 |
. |
Category:
|
math |
. |
Summary:
|
Let $X$ be a completely regular Hausdorff space and $E$ a real normed space. We examine the general properties of locally solid topologies on the space $C_b(X,E)$ of all $E$-valued continuous and bounded functions from $X$ into $E$. The mutual relationship between locally solid topologies on $C_b(X,E)$ and $C_b(X)$ $(=C_b(X,\Bbb R))$ is considered. In particular, the mutual relationship between strict topologies on $C_b(X)$ and $C_b(X,E)$ is established. It is shown that the strict topology $\beta _\sigma(X,E)$ (respectively $\beta _\tau(X,E)$) is the finest $\sigma $-Dini topology (respectively Dini topology) on $C_b(X,E)$. A characterization of $\sigma $-Dini and Dini topologies on $C_b(X,E)$ in terms of their topological duals is given. (English) |
Keyword:
|
vector-valued continuous functions |
Keyword:
|
strict topologies |
Keyword:
|
locally solid topologies |
Keyword:
|
Dini topologies |
MSC:
|
46A03 |
MSC:
|
46E05 |
MSC:
|
46E10 |
MSC:
|
46E40 |
MSC:
|
47A70 |
idZBL:
|
Zbl 1068.46023 |
idMR:
|
MR1920522 |
. |
Date available:
|
2009-01-08T19:24:00Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119336 |
. |
Reference:
|
[A] Aguayo-Garrido J.: Strict topologies on spaces of continuous functions and $u$-additive measure spaces.J. Math. Anal. Appl. 220 (1998), 77-89. Zbl 0914.46031, MR 1612071 |
Reference:
|
[AB] Aliprantis C.D., Burkinshaw O.: Locally Solid Topologies.Academic Press, New York, San Francisco, London, 1978. Zbl 0436.46009, MR 0493242 |
Reference:
|
[F] Fontenot R.A.: Strict topologies for vector-valued functions.Canad. J. Math. 26 (1974), 841-853. Zbl 0259.46037, MR 0348463 |
Reference:
|
[K$_1$] Katsaras A.K.: Spaces of vector measures.Trans. Amer. Math. Soc. 206 (1975), 313-328. Zbl 0275.46029, MR 0365111 |
Reference:
|
[K$_2$] Katsaras A.K.: Some locally convex spaces of continuous vector-valued functions over a completely regular space and their duals.Trans. Amer. Math. Soc. 216 (1976), 367-387. Zbl 0317.46031, MR 0390733 |
Reference:
|
[K$_3$] Katsaras A.K.: Locally convex topologies on spaces of continuous vector functions.Math. Nachr. 71 (1976), 211-226. Zbl 0281.46032, MR 0458143 |
Reference:
|
[Ku] Khurana S.S.: Topologies on spaces of vector-valued continuous functions.Trans. Amer. Math. Soc. 241 (1978), 195-211. Zbl 0362.46035, MR 0492297 |
Reference:
|
[KuO] Khurana S.S., Othman S.I.: Grothendieck measures.J. London Math. Soc. (2) 39 (1989), 481-486. Zbl 0681.46030, MR 1002460 |
Reference:
|
[KuV$_1$] Khurana S.S., Vielma J.E.: Strict topology and perfect measures.Czechoslovak Math. J. 40 (1990), 1-7. Zbl 0711.28002, MR 1032358 |
Reference:
|
[KuV$_2$] Khurana S.S., Vielma J.E.: Weak sequential convergence and weak compactness in spaces of vector-valued continuous functions.J. Math. Anal. Appl. 195 (1995), 251-260. Zbl 0854.46032, MR 1352821 |
Reference:
|
[S] Sentilles F.D.: Bounded continous functions on a completely regular space.Trans. Amer. Math. Soc. 168 (1972), 311-336. MR 0295065 |
Reference:
|
[W] Wheeler R.F.: Survey of Baire measures and strict topologies.Exposition Math. 2 (1983), 97-190. Zbl 0522.28009, MR 0710569 |
Reference:
|
[W$_1$] Wheeler R.F.: The strict topology, separable measures, and paracompactness.Pacific J. Math. 47 (1973), 287-302. Zbl 0244.46028, MR 0341047 |
. |