Title:
|
Addition theorems and $D$-spaces (English) |
Author:
|
Arhangel'skii, A. V. |
Author:
|
Buzyakova, R. Z. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
43 |
Issue:
|
4 |
Year:
|
2002 |
Pages:
|
653-663 |
. |
Category:
|
math |
. |
Summary:
|
It is proved that if a regular space $X$ is the union of a finite family of metrizable subspaces then $X$ is a $D$-space in the sense of E. van Douwen. It follows that if a regular space $X$ of countable extent is the union of a finite collection of metrizable subspaces then $X$ is Lindelöf. The proofs are based on a principal result of this paper: every space with a point-countable base is a $D$-space. Some other new results on the properties of spaces which are unions of a finite collection of nice subspaces are obtained. (English) |
Keyword:
|
$D$-space |
Keyword:
|
point-countable base |
Keyword:
|
extent |
Keyword:
|
metrizable space |
Keyword:
|
Lindelöf space |
MSC:
|
54D20 |
MSC:
|
54E35 |
MSC:
|
54F99 |
idZBL:
|
Zbl 1090.54017 |
idMR:
|
MR2045787 |
. |
Date available:
|
2009-01-08T19:25:55Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119354 |
. |
Reference:
|
[1] Arens R., Dugundji J.: Remark on the concept of compactness.Portugal. Math. 9 (1950), 141-143. Zbl 0039.18602, MR 0038642 |
Reference:
|
[2] Arhangel'skii A.V., Buzyakova R.Z.: On some properties of linearly Lindelöf spaces.Topology Proc. 23 (1998), 1-11. Zbl 0964.54018, MR 1800756 |
Reference:
|
[3] Balogh Z., Gruenhage G., Tkachuk V.: Additivity of metrizability and related properties.Topology Appl. 84 (1998), 91-103. Zbl 0991.54032, MR 1611277 |
Reference:
|
[4] Boone J.R.: On irreducible spaces, 2.Pacific J. Math. 62.2 (1976), 351-357. MR 0418037 |
Reference:
|
[5] Borges C.R., Wehrly A.C.: A study of $D$-spaces.Topology Proc. 16 (1991), 7-15. Zbl 0787.54023, MR 1206448 |
Reference:
|
[6] Burke D.K.: Covering properties.in: K. Kunen and J. Vaughan, Eds, Handbook of Set-theoretic Topology, Chapter 9, pp.347-422; North-Holland, Amsterdam, New York, Oxford, 1984. Zbl 0569.54022, MR 0776628 |
Reference:
|
[7] Buzyakova R.Z.: On $D$-property of strong $\Sigma $-spaces.Comment. Math. Univ. Carolinae 43.3 (2002), 493-495. Zbl 1090.54018, MR 1920524 |
Reference:
|
[8] de Caux P.: A collectionwise normal, weakly $\theta $-refinable Dowker space which is neither irreducible nor realcompact.Topology Proc. 1 (1976), 66-77. Zbl 0397.54019 |
Reference:
|
[9] Christian U.: Concerning certain minimal cover refinable spaces.Fund. Math. 76 (1972), 213-222. MR 0372818 |
Reference:
|
[10] van Douwen E., Pfeffer W.F.: Some properties of the Sorgenfrey line and related spaces.Pacific J. Math. 81.2 (1979), 371-377. Zbl 0409.54011, MR 0547605 |
Reference:
|
[11] van Douwen E.K., Wicke H.H.: A real, weird topology on reals.Houston J. Math. 13.1 (1977), 141-152. MR 0433414 |
Reference:
|
[12] Ismail M., Szymanski A.: On the metrizability number and related invariants of spaces, 2.Topology Appl. 71.2 (1996), 179-191. MR 1399555 |
Reference:
|
[13] Ismail M., Szymanski A.: On locally compact Hausdorff spaces with finite metrizability number.Topology Appl. 114.3 (2001), 285-293. Zbl 1012.54002, MR 1838327 |
Reference:
|
[14] Michael E., Rudin M.E.: Another note on Eberlein compacts.Pacific J. Math. 72 (1977), 497-499. Zbl 0344.54018, MR 0478093 |
Reference:
|
[15] Ostaszewski A.J.: Compact $\sigma $-metric spaces are sequential.Proc. Amer. Math. Soc. 68 (1978), 339-343. MR 0467677 |
Reference:
|
[16] Rudin M.E.: Dowker spaces.in: K. Kunen and J. Vaughan, Eds, Handbook of Set-theoretic Topology, Chapter 17, pp.761-780; North-Holland, Amsterdam, New York, Oxford, 1984. Zbl 0566.54009, MR 0776636 |
Reference:
|
[17] Tkachenko M.G.: On compactness of countably compact spaces having additional structure.Trans. Moscow Math. Soc. 2 (1984), 149-167. |
Reference:
|
[18] Wicke H.H., Worrell J.M., Jr.: Point-countability and compactness.Proc. Amer. Math. Soc. 55 (1976), 427-431. Zbl 0323.54013, MR 0400166 |
Reference:
|
[19] Worrell J.M., Wicke H.H.: Characterizations of developable spaces.Canad. J. Math. 17 (1965), 820-830. MR 0182945 |
Reference:
|
[20] Worrell J.M., Jr., Wicke H.H.: A covering property which implies isocompactness. 1.Proc. Amer. Math. Soc. 79.2 (1980), 331-334. MR 0565365 |
. |