Previous |  Up |  Next

Article

Title: Addition theorems and $D$-spaces (English)
Author: Arhangel'skii, A. V.
Author: Buzyakova, R. Z.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 43
Issue: 4
Year: 2002
Pages: 653-663
.
Category: math
.
Summary: It is proved that if a regular space $X$ is the union of a finite family of metrizable subspaces then $X$ is a $D$-space in the sense of E. van Douwen. It follows that if a regular space $X$ of countable extent is the union of a finite collection of metrizable subspaces then $X$ is Lindelöf. The proofs are based on a principal result of this paper: every space with a point-countable base is a $D$-space. Some other new results on the properties of spaces which are unions of a finite collection of nice subspaces are obtained. (English)
Keyword: $D$-space
Keyword: point-countable base
Keyword: extent
Keyword: metrizable space
Keyword: Lindelöf space
MSC: 54D20
MSC: 54E35
MSC: 54F99
idZBL: Zbl 1090.54017
idMR: MR2045787
.
Date available: 2009-01-08T19:25:55Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119354
.
Reference: [1] Arens R., Dugundji J.: Remark on the concept of compactness.Portugal. Math. 9 (1950), 141-143. Zbl 0039.18602, MR 0038642
Reference: [2] Arhangel'skii A.V., Buzyakova R.Z.: On some properties of linearly Lindelöf spaces.Topology Proc. 23 (1998), 1-11. Zbl 0964.54018, MR 1800756
Reference: [3] Balogh Z., Gruenhage G., Tkachuk V.: Additivity of metrizability and related properties.Topology Appl. 84 (1998), 91-103. Zbl 0991.54032, MR 1611277
Reference: [4] Boone J.R.: On irreducible spaces, 2.Pacific J. Math. 62.2 (1976), 351-357. MR 0418037
Reference: [5] Borges C.R., Wehrly A.C.: A study of $D$-spaces.Topology Proc. 16 (1991), 7-15. Zbl 0787.54023, MR 1206448
Reference: [6] Burke D.K.: Covering properties.in: K. Kunen and J. Vaughan, Eds, Handbook of Set-theoretic Topology, Chapter 9, pp.347-422; North-Holland, Amsterdam, New York, Oxford, 1984. Zbl 0569.54022, MR 0776628
Reference: [7] Buzyakova R.Z.: On $D$-property of strong $\Sigma $-spaces.Comment. Math. Univ. Carolinae 43.3 (2002), 493-495. Zbl 1090.54018, MR 1920524
Reference: [8] de Caux P.: A collectionwise normal, weakly $\theta $-refinable Dowker space which is neither irreducible nor realcompact.Topology Proc. 1 (1976), 66-77. Zbl 0397.54019
Reference: [9] Christian U.: Concerning certain minimal cover refinable spaces.Fund. Math. 76 (1972), 213-222. MR 0372818
Reference: [10] van Douwen E., Pfeffer W.F.: Some properties of the Sorgenfrey line and related spaces.Pacific J. Math. 81.2 (1979), 371-377. Zbl 0409.54011, MR 0547605
Reference: [11] van Douwen E.K., Wicke H.H.: A real, weird topology on reals.Houston J. Math. 13.1 (1977), 141-152. MR 0433414
Reference: [12] Ismail M., Szymanski A.: On the metrizability number and related invariants of spaces, 2.Topology Appl. 71.2 (1996), 179-191. MR 1399555
Reference: [13] Ismail M., Szymanski A.: On locally compact Hausdorff spaces with finite metrizability number.Topology Appl. 114.3 (2001), 285-293. Zbl 1012.54002, MR 1838327
Reference: [14] Michael E., Rudin M.E.: Another note on Eberlein compacts.Pacific J. Math. 72 (1977), 497-499. Zbl 0344.54018, MR 0478093
Reference: [15] Ostaszewski A.J.: Compact $\sigma $-metric spaces are sequential.Proc. Amer. Math. Soc. 68 (1978), 339-343. MR 0467677
Reference: [16] Rudin M.E.: Dowker spaces.in: K. Kunen and J. Vaughan, Eds, Handbook of Set-theoretic Topology, Chapter 17, pp.761-780; North-Holland, Amsterdam, New York, Oxford, 1984. Zbl 0566.54009, MR 0776636
Reference: [17] Tkachenko M.G.: On compactness of countably compact spaces having additional structure.Trans. Moscow Math. Soc. 2 (1984), 149-167.
Reference: [18] Wicke H.H., Worrell J.M., Jr.: Point-countability and compactness.Proc. Amer. Math. Soc. 55 (1976), 427-431. Zbl 0323.54013, MR 0400166
Reference: [19] Worrell J.M., Wicke H.H.: Characterizations of developable spaces.Canad. J. Math. 17 (1965), 820-830. MR 0182945
Reference: [20] Worrell J.M., Jr., Wicke H.H.: A covering property which implies isocompactness. 1.Proc. Amer. Math. Soc. 79.2 (1980), 331-334. MR 0565365
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_43-2002-4_6.pdf 234.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo