Previous |  Up |  Next

Article

Title: On the Diophantine equation $\frac{q^n-1}{q-1}=y$ (English)
Author: Khosravi, Amir
Author: Khosravi, Behrooz
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 44
Issue: 1
Year: 2003
Pages: 1-7
.
Category: math
.
Summary: There exist many results about the Diophantine equation $(q^n-1)/(q-1)=y^m$, where $m\ge 2$ and $n\geq 3$. In this paper, we suppose that $m=1$, $n$ is an odd integer and $q$ a power of a prime number. Also let $y$ be an integer such that the number of prime divisors of $y-1$ is less than or equal to $3$. Then we solve completely the Diophantine equation $(q^n-1)/(q-1)=y$ for infinitely many values of $y$. This result finds frequent applications in the theory of finite groups. (English)
Keyword: higher order Diophantine equation
Keyword: exponential Diophantine equation
MSC: 11D41
MSC: 11D61
idZBL: Zbl 1097.11015
idMR: MR2045841
.
Date available: 2009-01-08T19:26:54Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119363
.
Reference: [1] Bennett M.: Rational approximation to algebraic number of small height: The Diophantine equation $|ax^n-by^n|=1$.J. Reine Angew Math. 535 (2001), 1-49. Zbl 1009.05033, MR 1837094
Reference: [2] Bugeaud Y.: Linear forms in $p$-adic logarithms and the Diophantine equation $(x^n-1)/(x-1)=y^q$.Math. Proc. Cambridge Philos. Soc. 127 (1999), 373-381. MR 1713116
Reference: [3] Bugeaud Y., Laurent M.: Minoration effective de la distance $p$-adique entre puissances de nombres algébriques.J. Number Theory 61 (1996), 311-342. Zbl 0870.11045, MR 1423057
Reference: [4] Bugeaud Y., Mignotte M.: On integers with identical digits.Mathematika 46 (1999), 411-417. Zbl 1033.11012, MR 1832631
Reference: [5] Bugeaud Y., Mignotte M., Roy Y., Shorey T.N.: On the Diophantine equation $(x^n-1)/(x-1)=y^q$.Math. Proc. Cambridge Philos. Soc. 127 (1999), 353-372. MR 1713115
Reference: [6] Bugeaud Y., Mignotte M., Roy Y.: On the Diophantine equation $(x^n-1)/(x-1)=y^q$.Pacific J. Math. 193 (2) (2000), 257-268. MR 1755817
Reference: [7] Bugeaud Y., Hanrot G., Mignotte M.: Sur l'equation diophantiene $(x^n-1)/(x-1)=y^q$ III.(French), Proc. London Math. Soc. III. Ser. 84 (1) (2002), 59-78. MR 1863395
Reference: [8] Crescenzo P.: A Diophantine equation arises in the theory of finite groups.Adv. Math. 17 (1975), 25-29. MR 0371812
Reference: [9] Edgar H.: Problems and some results concerning the Diophantine equation $1+A+A^2+\cdots+A^{x-1}=P^y$.Rocky Mountain J. Math. 15 (1985), 327-329. MR 0823244
Reference: [10] Guralnick R.M.: Subgroups of prime power index in a simple group.J. Algebra 81 (1983), 304-311. Zbl 0515.20011, MR 0700286
Reference: [11] Hardy G.H., Wright E.M.: An Introduction to Theory of Numbers.Oxford University Press, 1962.
Reference: [12] Le M.: A note on the Diophantine equation $(x^m-1)/(x-1)=y^n$.Acta Arith. 64 (1993), 19-28. Zbl 0802.11011, MR 1220482
Reference: [13] Le M.: A note on perfect powers of the form $x^{m-1}+\cdots+x+1$.Acta Arith. 69 (1995), 91-98. Zbl 0819.11012, MR 1310844
Reference: [14] Ljunggren W.: Noen setninger om ubestemte likninger av formen $(x^n-1)/(x-1)=y^q$.Norsk. Mat. Tidsskr. 25 (1943), 17-20.
Reference: [15] Mollin R.A.: Fundamental Number Theory with Applications.CRC Press, New York, 1998. MR 2404578
Reference: [16] Nagell T.: Note sur l'equation indéterminée $(x^n-1)/(x-1)=y^q$.Norsk. Mat. Tidsskr. 2 (1920), 75-78.
Reference: [17] Saradha N., Shorey T.N.: The equation $(x^n-1)/(x-1)=y^q$ with $x$ square,.Math. Proc. Cambridge Philos. Soc. 125 (1999), 1-19. MR 1645497
Reference: [18] Shorey T.N.: Exponential Diophantine equation involving product of consecutive integers and related equations.(English) Bambah, R.P. (Ed.) et al., Number theory; Basel, Birkhäuser, Trends in Mathematics, (2000), 463-495. MR 1764814
Reference: [19] Shorey T.N., Tijdeman R.: New applications of Diophantine approximation to Diophantine equations.Math. Scand. 39 (1976), 5-18. MR 0447110
Reference: [20] Shorey T.N.: Exponential Diophantine equations.Cambridge Tracts in Mathematics 87 (1986), Cambridge University Press, Cambridge. Zbl 1156.11015, MR 0891406
Reference: [21] Yu L., Le M.: On the Diophantine equation $(x^m-1)/(x-1)=y^n$.Acta Arith. 83 (1995), 363-366. Zbl 0870.11019
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_44-2003-1_1.pdf 200.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo