Previous |  Up |  Next

Article

Title: Products of $k$-spaces, and questions (English)
Author: Tanaka, Yoshio
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 44
Issue: 2
Year: 2003
Pages: 335-345
.
Category: math
.
Summary: As is well-known, every product of a locally compact space with a $k$-space is a $k$-space. But, the product of a separable metric space with a $k$-space need not be a $k$-space. In this paper, we consider conditions for products to be $k$-spaces, and pose some related questions. (English)
Keyword: $k$-space
Keyword: sequential space
Keyword: strongly Fr'{e}chet space
Keyword: bi-$k$-space
Keyword: strongly sequential space
Keyword: Tanaka space
MSC: 54B10
MSC: 54B15
MSC: 54D50
MSC: 54D55
idZBL: Zbl 1100.54006
idMR: MR2026168
.
Date available: 2009-01-08T19:29:38Z
Last updated: 2020-02-20
Stable URL: http://hdl.handle.net/10338.dmlcz/119390
.
Reference: [1] Boehme T.K.: Linear $s$-spaces.Proc. Symp. Convergent structures, Univ. Oklahoma, 1965.
Reference: [2] Franklin S.P.: Spaces in which sequences suffice.Fund. Math. LVII (1965), 107-113. Zbl 0132.17802, MR 0180954, 10.4064/fm-57-1-107-115
Reference: [3] Gruenhage G., Michael E., Tanaka Y.: Spaces determined by point-countable covers.Pacific J. Math. 113 (1984), 303-332. Zbl 0561.54016, MR 0749538, 10.2140/pjm.1984.113.303
Reference: [4] Lin S.: A note on the Arens' space and sequential fan.Topology Appl. 81 (1997), 185-196. Zbl 0885.54019, MR 1485766, 10.1016/S0166-8641(97)00031-X
Reference: [5] Lin S., Liu C.: On spaces with point-countable $cs$-networks.Topology Appl. 74 (1996), 51-60. Zbl 0869.54036, MR 1425925, 10.1016/S0166-8641(96)00043-0
Reference: [6] Michael E.: Bi-quotient maps and cartesian products of quotient maps.Ann. Inst. Fourier, Grenoble 18 (1968), 287-302. Zbl 0175.19704, MR 0244964, 10.5802/aif.301
Reference: [7] Michael E.: A quintuple quotient quest.Gen. Topology Appl. 2 (1972), 91-138. Zbl 0238.54009, MR 0309045, 10.1016/0016-660X(72)90040-2
Reference: [8] Michael E., Olson R.C., Siwiec F.: $A$-spaces and countably bi-quotient maps.Dissertationes Math. 133 (1976), 4-43. Zbl 0338.54006, MR 0418023
Reference: [9] Mynard F.: Strongly sequential spaces.Comment. Math. Univ. Carolinae 41 (2000), 143-153. Zbl 1037.54504, MR 1756935
Reference: [10] Mynard F.: More on strongly sequential spaces.Comment. Math. Univ. Carolinae 43 (2002), 525-530. Zbl 1090.54006, MR 1920528
Reference: [11] Olson R.C.: Bi-quotient maps, countably bi-sequential spaces, and related topics.Gen. Topology Appl. 4 (1974), 1-28. Zbl 0278.54008, MR 0365463, 10.1016/0016-660X(74)90002-6
Reference: [12] Siwiec F.: Sequence-converging and countably bi-quotient mappings.Gen. Topology Appl. 1 (1971), 143-154. MR 0288737, 10.1016/0016-660X(71)90120-6
Reference: [13] Tanaka Y.: On products of quasi-perfect maps.Proc. Japan Acad. 46 (1970), 1070-1073. Zbl 0226.54008, MR 0296917
Reference: [14] Tanaka Y.: On quasi-$k$-spaces.Proc. Japan Acad. 46 (1970), 1074-1079. Zbl 0224.54030, MR 0296887
Reference: [15] Tanaka Y.: On sequential spaces.Science Reports of Tokyo Kyoiku Daigaku Sect. A, 11 (1971), 68-72. Zbl 0246.54026, MR 0307172
Reference: [16] Tanaka Y.: Products of sequential spaces.Proc. Amer. Math. Soc. 54 (1976), 371-375. Zbl 0292.54025, MR 0397665, 10.1090/S0002-9939-1976-0397665-6
Reference: [17] Tanaka Y.: A characterization for the products of $k$-and-${\aleph}_0$-spaces and related results.Proc. Amer. Math. Soc. 59 (1976), 149-155. Zbl 0336.54026, MR 0415580
Reference: [18] Tanaka Y.: On the $k$-ness for the products of closed images of metric spaces.Gen. Topology Appl. 9 (1978), 175-183. Zbl 0387.54010, MR 0493934, 10.1016/0016-660X(78)90062-4
Reference: [19] Tanaka Y.: Point-countable $k$-systems and products of $k$-spaces.Pacific J. Math. 101 (1982), 199-208. Zbl 0498.54023, MR 0671852, 10.2140/pjm.1982.101.199
Reference: [20] Tanaka Y.: Metrizability of certain quotient spaces.Fund. Math. 119 (1983), 157-168. MR 0731817, 10.4064/fm-119-2-157-168
Reference: [21] Tanaka Y.: On the products of $k$-spaces questions.Questions Answers Gen. Topology 1 (1983), 36-50. MR 0698037
Reference: [22] Tanaka Y.: $k$-spaces and the products of closed images.Questions Answers Gen. Topology 1 (1983), 88-99. Zbl 0545.54021, MR 0722087
Reference: [23] Tanaka Y.: Point-countable covers and $k$-networks.Topology Proc. 12 (1987), 327-349. Zbl 0676.54035, MR 0991759
Reference: [24] Tanaka Y.: Products of $k$-spaces having point-countable $k$-networks,.Topology Proc. 22 (1997), 305-329. Zbl 0916.54017, MR 1657891
Reference: [25] Tanaka Y., Shimizu Y.: Products of $k$-spaces, and special countable spaces.to appear in Tsukuba J. Math. Zbl 1057.54022, MR 2025736
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_44-2003-2_12.pdf 203.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo