Previous |  Up |  Next

Article

Keywords:
vector spaces; linear and affine subspaces; linear relations
Summary:
Let $X$ and $Y$ be vector spaces over the same field $K$. Following the terminology of Richard Arens [Pacific J. Math. 11 (1961), 9–23], a relation $F$ of $X$ into $Y$ is called linear if $\lambda F(x)\subset F(\lambda x)$ and $F(x)+F(y)\subset F(x+y)$ for all $\lambda \in K\setminus \{0\}$ and $x,y\in X$. After improving and supplementing some former results on linear relations, we show that a relation $\Phi$ of a linearly independent subset $E$ of $X$ into $Y$ can be extended to a linear relation $F$ of $X$ into $Y$ if and only if there exists a linear subspace $Z$ of $Y$ such that $\Phi (e)\in Y|Z$ for all $e\in E$. Moreover, if $E$ generates $X$, then this extension is unique. Furthermore, we also prove that if $F$ is a linear relation of $X$ into $Y$ and $Z$ is a linear subspace of $X$, then each linear selection relation $\Psi$ of $F|Z$ can be extended to a linear selection relation $\Phi$ of $F$. A particular case of this Hahn-Banach type theorem yields an easy proof of the existence of a linear selection function $f$ of $F$ such that $f\circ F^{ -1}$ is also a function.
References:
[1] Adasch N.: Der Satz über offene lineare Relationen in topologischen Vektorräumen. Note Mat. 11 (1991), 1-5. MR 1258535
[2] Arens R.: Operational calculus of linear relations. Pacific J. Math. 11 (1961), 9-23. MR 0123188 | Zbl 0102.10201
[3] Berge C.: Topological Spaces Including a Treatment of Multi-Valued Functions, Vector Spaces and Convexity. Oliver and Boyd London (1963). MR 1464690 | Zbl 0114.38602
[4] Cross R.: Multivalued Linear Operators. Marcel Dekker New York (1998). MR 1631548 | Zbl 0911.47002
[5] Dacić R.: On multi-valued functions. Publ. Inst. Math. (Beograd) (N.S.) 9 (1969), 5-7. MR 0257991
[6] Findlay G.D.: Reflexive homomorphic relations. Canad. Math. Bull. 3 (1960), 131-132. MR 0124251 | Zbl 0100.28002
[7] Godini G.: Set-valued Cauchy functional equation. Rev. Roumaine Math. Pures Appl. 20 (1975), 1113-1121. MR 0393920 | Zbl 0322.39013
[8] Holá L'.: Some properties of almost continuous linear relations. Acta Math. Univ. Comenian. 50-51 (1987), 61-69. MR 0989404
[9] Holá L'., Kupka I.: Closed graph and open mapping theorems for linear relations. Acta Math. Univ. Comenian. 46-47 (1985), 157-162. MR 0872338
[10] Holá L'., Maličký P.: Continuous linear selectors of linear relations. Acta Math. Univ. Comenian. 48-49 (1986), 153-157. MR 0885328
[11] Kelley J.L., Namioka I.: Linear Topological Spaces. D. Van Nostrand New York (1963). MR 0166578 | Zbl 0115.09902
[12] Nikodem K.: K-convex and K-concave set-valued functions. Zeszty Nauk. Politech. Lódz. Mat. 559 (1989), 1-75.
[13] Robinson S.M.: Normed convex processes. Trans. Amer. Math. Soc. 174 (1972), 127-140. MR 0313769
[14] Smajdor W.: Subadditive and subquadratic set-valued functions. Prace Nauk. Univ. Ślask. Katowic. 889 (1987), 1-73. MR 0883802 | Zbl 0626.54019
[15] Száz Á.: Pointwise limits of nets of multilinear maps. Acta Sci. Math. (Szeged) 55 (1991), 103-117. MR 1124949
[16] Száz Á.: The intersection convolution of relations and the Hahn-Banach type theorems. Ann. Polon. Math. 69 (1998), 235-249. MR 1665007
[17] Száz Á.: An extension of Kelley's closed relation theorem to relator spaces. Filomat (Nis) 14 (2000), 49-71. MR 1953994 | Zbl 1012.54026
[18] Száz Á.: Preseminorm generating relations and their Minkowski functionals. Publ. Elektrotehn. Fak. Univ. Beograd, Ser. Mat. 12 (2001), 16-34. MR 1920353 | Zbl 1060.46004
[19] Száz Á.: Translation relations, the building blocks of compatible relators. Math. Montisnigri, to appear. MR 2023739
[20] Száz Á., Száz G.: Additive relations. Publ. Math. Debrecen 20 (1973), 259-272. MR 0340878
[21] Száz Á., Száz G.: Linear relations. Publ. Math. Debrecen 27 (1980), 219-227. MR 0603995
[22] Ursescu C.: Multifunctions with convex closed graph. Czechoslovak Math. J. 25 (1975), 438-441. MR 0388032 | Zbl 0318.46006
[23] Wilhelm M.: Criteria of openness of relations. Fund. Math. 114 (1981), 219-228. MR 0644407
Partner of
EuDML logo