Previous |  Up |  Next

Article

Title: Lyapunov measures on effect algebras (English)
Author: Avallone, Anna
Author: Barbieri, Giuseppina
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 44
Issue: 3
Year: 2003
Pages: 389-397
.
Category: math
.
Summary: We prove a Lyapunov type theorem for modular measures on lattice ordered effect algebras. (English)
Keyword: Lyapunov measures
Keyword: effect algebras
Keyword: modular functions
MSC: 06C15
MSC: 22B05
idZBL: Zbl 1097.22002
idMR: MR2025808
.
Date available: 2009-01-08T19:30:04Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119396
.
Reference: [1] Avallone A.: Lattice uniformities on orthomodular structures.Math. Slovaca 51 (2001), 4 403-419. Zbl 1015.28014, MR 1864109
Reference: [2] Avallone A.: Liapunov modular functions.submitted.
Reference: [3] Avallone A.: Separating points of measures on effect algebras.preprint. Zbl 1150.28009, MR 2357812
Reference: [4] Avallone A., Basile A.: On a Marinacci uniqueness theorem for measures.J. Math. Anal. Appl., to appear. Zbl 1052.28011
Reference: [5] Barbieri G.: Lyapunov's theorem for measures on D-posets.Internat. J. Theoret. Phys., to appear. Zbl 1081.81007, MR 2108298
Reference: [6] Beltrametti E.G., Cassinelli G.: The Logic of Quantum Mechanics.Addison-Wesley Publishing Co., Reading, Mass., 1981. Zbl 0595.03062, MR 0635780
Reference: [7] Bennett M.K., Foulis D.J.: Effect algebras and unsharp quantum logics. Special issue dedicated to Constantin Piron on the occasion of his sixtieth birthday.Found. Phys. 24 10 (1994), 1331-1352. MR 1304942
Reference: [8] Bennett M.K., Foulis D.J.: Phi-symmetric effect algebras.Found. Phys. 25 (1995), 12 1699-172. MR 1377109
Reference: [9] Butnariu D., Klement P.: Triangular Norm-Based Measures and Games with Fuzzy Coalitions.Kluwer Acad. Publ., 1993. Zbl 0804.90145
Reference: [10] Chovanec F., Kopka F.: D-posets.Math. Slovaca 44 (1994), 21-34. Zbl 0789.03048, MR 1290269
Reference: [11] de Lucia P., Wright J.D.M.: Group valued measures with the Lyapunoff property.Rend. Circ. Mat. Palermo (2) 40 3 (1991), 442-452. Zbl 0765.28011, MR 1174242
Reference: [12] De Simone A., Navara M., Pták P.: On interval homogeneous orthomodular lattices.Comment. Math. Univ. Carolinae 42 (2001), 1 23-30. Zbl 1052.06007, MR 1825370
Reference: [13] Dvurečenskij A., Pulmannová S.: New Trends in Quantum Structures.Mathematics and its Applications, 516, Kluwer Acad. Publ., Dordrecht; Ister Science, Bratislava, 2000. MR 1861369
Reference: [14] Epstein L.G., Zhang J.: Subjective probabilities on subjectively unambiguous events.Econometrica 69 ((2001)), 2 265-306. Zbl 1020.91048, MR 1819756
Reference: [15] Knowles G.: Liapunov vector measures.SIAM J. Control 13 (1975), 294-303. MR 0388216
Reference: [16] Weber H.: Uniform lattices I, II. A generalization of topological Riesz spaces and topological Boolean rings; Order continuity and exhaustivity.Ann. Mat. Pura Appl. (4) 160 (1991), 347-370 (1992); (4) 165 (1993), 133-158. MR 1163215
Reference: [17] Weber H.: On modular functions.Funct. Approx. Comment. Math. 24 (1996), 35-52. Zbl 0887.06011, MR 1453447
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_44-2003-3_1.pdf 221.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo