Previous |  Up |  Next


semigroup action; monoid action; cancellative action; universal actions; $S$-set; tensor product
The following problem is considered: when can the action of a cancellative semigroup $S$ on a set be extended to a simply transitive action of the universal group of $S$ on a larger set.
[1] Cirić X., Bogdanović Y.: Theory of greatest decompositions of semigroups (a survey). Filomat (Nis) 9:3 (1995), 385-426. MR 1385929 | Zbl 0848.20054
[2] Dubreil P.: Contribution à la théorie des demi-groupes, II. Rend. Mat. Appl. 10 (1951), 183-200. MR 0048426 | Zbl 0045.00802
[3] Eilenberg S.: Automata, Languages, and Machines. Vol. B, Academic Press, 1976. MR 0530383 | Zbl 0359.94067
[4] Grillet P.A.: Cancellative coextensions. to appear in Acta Sci. Math. (Szeged). MR 2034193 | Zbl 1053.20055
[5] Stenström B.: Flatness and localization over monoids. Math. Nachr. 48 (1971), 315-334. MR 0296191
Partner of
EuDML logo