Title:
|
Semilinear elliptic problems with nonlinearities depending on the derivative (English) |
Author:
|
Arcoya, David |
Author:
|
del Toro, Naira |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
44 |
Issue:
|
3 |
Year:
|
2003 |
Pages:
|
413-426 |
. |
Category:
|
math |
. |
Summary:
|
We deal with the boundary value problem $$ \alignat2 -\Delta u(x) & = \lambda _{1}u(x)+g(\nabla u(x))+h(x), \quad && x\in \Omega \ u(x) & = 0, && x\in \partial \Omega \endalignat $$ where $\Omega \subset \Bbb R^N$ is an smooth bounded domain, $\lambda _{1}$ is the first eigenvalue of the Laplace operator with homogeneous Dirichlet boundary conditions on $\Omega $, $h\in L^{\max \{2,N/2\}}(\Omega )$ and $g:\Bbb R^N\longrightarrow \Bbb R$ is bounded and continuous. Bifurcation theory is used as the right framework to show the existence of solution provided that $g$ satisfies certain conditions on the origin and at infinity. (English) |
Keyword:
|
nonlinear boundary value problems |
Keyword:
|
elliptic partial differential equations |
Keyword:
|
bifurcation |
Keyword:
|
resonace |
MSC:
|
35B32 |
MSC:
|
35B34 |
MSC:
|
35J25 |
MSC:
|
35J60 |
MSC:
|
35J65 |
MSC:
|
47J15 |
idZBL:
|
Zbl 1105.35038 |
idMR:
|
MR2025810 |
. |
Date available:
|
2009-01-08T19:30:14Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119398 |
. |
Reference:
|
[1] Ambrosetti A., Hess P.: Positive solutions of asymptotically linear elliptic eigenvalue problems.J. Math. Anal. Appl. 73 (2) (1980), 411-422. Zbl 0433.35026, MR 0563992 |
Reference:
|
[2] Almira J.M., Del Toro N.: Some remarks on certains semilinear problems with nonlinearities depending on the derivative.Electron. J. Differential Equations 2003 (2003), 18 1-11. |
Reference:
|
[3] Anane A., Chakrone O., Gossez J.P.: Spectre d'ordre supérieur et problèmes de non-résonance.C.R. Acad. Sci. Paris 325 Série I (1997), 33-36. Zbl 0880.35083, MR 1461393 |
Reference:
|
[4] Arcoya D., Gámez J.L.: Bifurcation theory and related problems: anti-maximum principle and resonance.Comm. Partial Differential Equations 26 9-10 (2001), 1879-1911. Zbl 1086.35010, MR 1865948 |
Reference:
|
[5] Brezis H., Kato T.: Remarks on the Schrödinger operator with singular complex potentials.J. Math. Pures Appl. IX, 58 (1979), 137-151. Zbl 0408.35025, MR 0539217 |
Reference:
|
[6] Ca nada A.: Nonselfadjoint semilinear elliptic boundary value problems.Ann. Mat. Pura Appl. CXLVIII (1987), 237-250. MR 0932766 |
Reference:
|
[7] Ca nada A., Drábek P.: On semilinear problems with nonlinearities depending only on derivatives SIAM J. Math. Anal..27 (1996), 543-557. MR 1377488 |
Reference:
|
[8] Coifman R.R., Fefferman C.L.: Weighted norm inequalities for maximal functions and singular integrals.Studia Math. 51 (1974), 241-250. Zbl 0291.44007, MR 0358205 |
Reference:
|
[9] Drábek P., Girg P., Roca F.: Remarks on the range properties of certain semilinear problems of Landesman-Lazer type.J. Math. Anal. Appl. 257 (2001), 131-140. Zbl 0993.34012, MR 1824670 |
Reference:
|
[10] Drábek P., Nicolosi F.: Semilinear boundary value problems at resonance with general nonlinearities.Differential Integral Equations 5 -2 (1992), 339-355. MR 1148221 |
Reference:
|
[11] De Figuereido D.G., Lions P.L., Nussbaum R.D.: A priori estimates and existence of positive solutions for semi-linear elliptic equations.J. Math. Pures Appl. 61 (1982), 41-63. MR 0664341 |
Reference:
|
[12] Garofalo N., Lin F.H.: Unique continuation for elliptic operators: a geometric-variational approach.Comm. Pure Appl. Math. XL (1987), 347-366. Zbl 0674.35007, MR 0882069 |
Reference:
|
[13] Gidas B., Ni W.M., Nirenberg L.: Symmetry and related properties via the maximum principle.Comm. Math. Phys. 68 (1979), 209-243. Zbl 0425.35020, MR 0544879 |
Reference:
|
[14] Gilbarg D., Trudinger N.: Elliptic Partial Differential Equations of Second Order.Springer, 1983. Zbl 1042.35002, MR 0737190 |
Reference:
|
[15] Girg P.: Neumann and periodic boundary-value problems for quasilinear ordinary differential equations with a nonlinearity in the derivative.Electron. J. Differential Equations 63 (2000), 1-28. Zbl 0974.34018, MR 1799793 |
Reference:
|
[16] Habets P., Sanchez L.: A two-point problem with nonlinearity depending only on the derivative.SIAM J. Math. Anal. 28 (1997), 1205-1211. Zbl 0886.34015, MR 1466677 |
Reference:
|
[17] Kannan R., Nagle R.K., Pothoven K.L.: Remarks on the existence of solutions of $x''+x+\arctan (x')=p(t)$; $x(0)=x(\pi)=0$.Nonlinear Anal. 22 (1994), 793-796. Zbl 0802.34021, MR 1270170 |
Reference:
|
[18] Landesman E.M., Lazer A.C.: Nonlinear perturbations of linear elliptic boundary value problems at resonance.J. Math. Mech. 19 (1970), 609-623. Zbl 0193.39203, MR 0267269 |
Reference:
|
[19] Leray J., Schauder J.: Topologie et équations fonctionelles.Ann. Scient. Éc. Norm. Sup. 51 (1934), 45-78. MR 1509338 |
Reference:
|
[20] Mawhin J.: Some remarks on semilinear problems at resonance where the nonlinearity depends only on the derivatives.Acta Math. Inform. Univ. Ostraviensis 2 (1994), 61-69. Zbl 0853.34021, MR 1309064 |
Reference:
|
[21] Mawhin J., Schmitt K.: Landesman-Lazer type problems at an eigenvalue of odd multiplicity.Results Math. 14 (1988), 138-146. Zbl 0780.35043, MR 0956010 |
Reference:
|
[22] Muckenhoupt B.: Weighted norm inequalities for the Hardy maximal function.Trans. Amer. Math. Soc. 165 (1972), 207-226. Zbl 0236.26016, MR 0293384 |
Reference:
|
[23] Nagle R.K., Pothoven K., Singkofer K.: Nonlinear elliptic equations at resonance where the nonlinearity depends essentially on the derivatives J. Diff. Equations.38 (1980), 210-225. MR 0597801 |
Reference:
|
[24] Nussbaum R.: Uniqueness and nonuniqueness for periodics solutions of $x'(t)=-g(x(t-1))$.J. Differential Equations 34 (1979), 24-54. MR 0549582 |
Reference:
|
[25] Rabinowitz P.H.: On bifurcation from infinity.J. Differential Equations 14 (1973), 462-475. Zbl 0272.35017, MR 0328705 |
Reference:
|
[26] Struwe M.: Variational Methods. Application to Nonlinear Partial Differential Equations and Hamiltonian Systems.Springer, 1990. MR 1078018 |
. |