Previous |  Up |  Next

Article

Title: The Poisson integral for a ball in spaces of constant curvature (English)
Author: Symeonidis, Eleutherius
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 44
Issue: 3
Year: 2003
Pages: 437-460
.
Category: math
.
Summary: We present explicit expressions of the Poisson kernels for geodesic balls in the higher dimensional spheres and real hyperbolic spaces. As a consequence, the Dirichlet problem for the projective space is explicitly solved. Comparison of different expressions for the same Poisson kernel lead to interesting identities concerning special functions. (English)
Keyword: Poisson integral
Keyword: Poisson kernel
Keyword: Dirichlet problem
Keyword: harmonic function
Keyword: Riemannian manifold
Keyword: hypergeometric function
MSC: 31C12
MSC: 33C90
MSC: 35J25
idZBL: Zbl 1127.31302
idMR: MR2025812
.
Date available: 2009-01-08T19:30:24Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119400
.
Reference: [1] Ahlfors L.V.: Möbius Transformations in Several Dimensions.Ordway Professorship Lectures in Mathematics, University of Minnesota, Minneapolis, 1981. Zbl 0663.30001, MR 0725161
Reference: [2] Birkhoff G., Rota G.-C.: Ordinary Differential Equations.Third Edition, Wiley, New York, 1978. Zbl 0377.34001, MR 0507190
Reference: [3] Courant R., Hilbert D.: Methods of Mathematical Physics.Volume I, First English Edition, Interscience, New York, 1953. Zbl 0788.00012, MR 0065391
Reference: [4] Dörrie H.: Unendliche Reihen.R. Oldenbourg, Munich, 1951, also Sändig GmbH, Wiesbaden, 1989. MR 0046454
Reference: [5] Fenchel W.: Elementary Geometry in Hyperbolic Space.de Gruyter, Berlin, 1989. Zbl 0674.51001, MR 1004006
Reference: [6] Helgason S.: Groups and Geometric Analysis, Integral Geometry, Invariant Differential Operators, and Spherical Functions.Academic Press, Orlando, 1984. Zbl 0965.43007, MR 0754767
Reference: [7] John F.: Partial Differential Equations.Third Edition, Springer, New York, 1978. MR 0514404
Reference: [8] Lebedew N.N.: Spezielle Funktionen und ihre Anwendung.B.I.-Wissenschaftsverlag, Bibliographisches Institut, Zurich, 1973. MR 0350076
Reference: [9] Miranda C.: Partial Differential Equations of Elliptic Type.Second Revised Edition, Springer, New York, 1970. Zbl 0198.14101, MR 0284700
Reference: [10] Nikiforov A., Ouvarov V.: Eléments de la théorie des fonctions spéciales.Traduction française Editions Mir, Moscow, 1976. MR 0460738
Reference: [11] Sigl R.: Ebene und sphärische Trigonometrie.Akademische Verlagsgesellschaft, Frankfurt, 1969. Zbl 0177.27403
Reference: [12] Symeonidis E.: The Poisson Integral as an appropriate mean value.Analysis 19 (1999), 13-18. Zbl 0936.31006, MR 1690655
Reference: [13] Symeonidis E.: The Poisson Integral for a disk in the hyperbolic plane.Exposition. Math. 17 (1999), 239-244. Zbl 0939.31003, MR 1706212
Reference: [14] Symeonidis E.: The Dirichlet problem for a disk on the sphere $S^2$.Exposition. Math. 17 (1999), 365-370. MR 1734254
Reference: [15] Tricomi F.G.: Vorlesungen über Orthogonalreihen.Second Revised Edition, Springer, Berlin, 1970. Zbl 0188.37403, MR 0261250
Reference: [16] Vignati M: A geometric property of functions harmonic in a disk.El. Math. 47 (1992), 33-38. Zbl 0758.31001, MR 1158146
Reference: [17] Vignati M.: On the factorization of Poisson integrals on spheres.preprint, Università degli studi di Milano, 1990.
Reference: [18] Willmore T.J.: Riemannian Geometry.Oxford Science Publications, Oxford University Press, New York, 1993. Zbl 1117.53017, MR 1261641
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_44-2003-3_5.pdf 323.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo