Previous |  Up |  Next

Article

Title: The fractional integral between weighted Orlicz and $BMO_{\phi}$ spaces on spaces of homogeneous type (English)
Author: Pradolini, Gladis
Author: Salinas, Oscar
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 44
Issue: 3
Year: 2003
Pages: 469-487
.
Category: math
.
Summary: In this work we give sufficient and necessary conditions for the boundedness of the fractional integral operator acting between weighted Orlicz spaces and suitable $BMO_{\phi}$ spaces, in the general setting of spaces of homogeneous type. This result generalizes those contained in [P1] and [P2] about the boundedness of the same operator acting between weighted $L^{p}$ and Lipschitz integral spaces on $\Bbb R^n$. We also give some properties of the classes of pairs of weights appearing in connection with this boundedness. (English)
Keyword: weights
Keyword: Orlicz spaces
Keyword: $BMO$
Keyword: fractional integral
MSC: 26A33
MSC: 42B25
MSC: 46E30
MSC: 46E35
idZBL: Zbl 1103.46019
idMR: MR2025814
.
Date available: 2009-01-08T19:30:33Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119402
.
Reference: [BS] Bernardis A., Salinas O.: Two-weighted inequalities for certain maximal fractional operators on spaces of homogeneous type.Revista de la Unión Matemática Argentina 41 3 (1999). MR 1763261
Reference: [GGKK] Genebashvili I., Gogatishvili A., Kokilashvili V., Krbec M.: Weight Theory for Integral Transforms on Spaces of Homogeneous Type.Addison Wesley Longman Limited, Harlow, 1998. Zbl 0955.42001, MR 1791462
Reference: [GV] Gatto A., Vagi S.: Fractional integrals on spaces of homogeneous type.Analysis and Partial Differential Equations, Lecture Notes in Pure and Appl. Math., Vol. 122, Marcel Dekker, New York, 1990, pp.171-216. Zbl 1002.42501, MR 1044788
Reference: [HSV1] Harboure E., Salinas O., Viviani B.: Boundedness of the fractional integral on weighted Lebesgue spaces and Lipschitz spaces.Trans. Amer. Math. Soc. 349 1 (1997), 235-255. MR 1357395
Reference: [HSV2] Harboure E., Salinas O., Viviani B.: Relations between weighted Orlicz and $BMO(\phi)$ spaces through fractional integrals.Comment. Math. Univ. Carolinae 40 1 (1999), 53-69. MR 1715202
Reference: [KK] Kokilashvili V., Krbec M.: Weighted Inequalities in Lorentz and Orlicz Spaces.World Scientific, River Edge, NJ, 1991. Zbl 0751.46021, MR 1156767
Reference: [MST] Macías R., Segovia C., Torrea J.: Singular integral operators with non-necessarily bounded kernels on spaces of homogeneous type.Adv. Math. 93 1 (1992). MR 1160842
Reference: [MT] Macías R., Torrea J.: $L^{2}$ and $L^p$ boundedness of singular integrals on non necessarily normalized spaces of homogeneous type.Cuadernos de Matemática y Mecánica, No. 1-88, PEMA-INTEC-GTM, Santa Fe, Argentina.
Reference: [MW] Muckenhoupt B., Wheeden R.: Weighted norm inequalities for the fractional integrals.Trans. Amer. Math. Soc. 192 261-274 (1974). MR 0340523
Reference: [P1] Pradolini G.: Two-weighted norm inequalities for the fractional integral operator between $L^p$ and Lipschitz spaces.Comment. Math. Prace Mat. 41 (2001), 147-169. MR 1876717
Reference: [P2] Pradolini G.: A class of pairs of weights related to the boundedness of the Fractional Integral Operator between $L^p$ and Lipschitz spaces.Comment. Math. Univ. Carolinae 42 (2001), 133-152. MR 1825378
Reference: [RR] Rao, M.M., Ren Z.D.: Theory of Orlicz Spaces.Marcel Dekker, New York, 1991. Zbl 0724.46032, MR 1113700
Reference: [S] Sawyer E.: A characterization of two-weight norm inequalities related to the fractional and Poisson integrals.Trans. Amer. Math. Soc. 308 533-545 (1988). MR 0930072
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_44-2003-3_7.pdf 279.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo