| Title:
             | 
On the uniqueness of loops $M(G,2)$ (English) | 
| Author:
             | 
Vojtěchovský, Petr | 
| Language:
             | 
English | 
| Journal:
             | 
Commentationes Mathematicae Universitatis Carolinae | 
| ISSN:
             | 
0010-2628 (print) | 
| ISSN:
             | 
1213-7243 (online) | 
| Volume:
             | 
44 | 
| Issue:
             | 
4 | 
| Year:
             | 
2003 | 
| Pages:
             | 
629-635 | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
Let $G$ be a finite group and $C_2$ the cyclic group of order 2. Consider the 8 multiplicative operations $(x,y)\mapsto (x^iy^j)^k$, where $i,j,k\in\{-1,\,1\}$. Define a new multiplication on $G\times C_2$ by assigning one of the above 8 multiplications to each quarter $(G\times\{i\})\times(G\times\{j\})$, for $i,j\in C_2$. If the resulting quasigroup is a Bol loop, it is Moufang. When $G$ is nonabelian then exactly four assignments yield Moufang loops that are not associative; all (anti)isomorphic, known as loops $M(G,2)$. (English) | 
| Keyword:
             | 
Moufang loops | 
| Keyword:
             | 
loops $M(G, 2)$ | 
| Keyword:
             | 
inverse property loops | 
| Keyword:
             | 
Bol loops | 
| MSC:
             | 
20N05 | 
| idZBL:
             | 
Zbl 1101.20047 | 
| idMR:
             | 
MR2062879 | 
| . | 
| Date available:
             | 
2009-01-08T19:31:43Z | 
| Last updated:
             | 
2012-04-30 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/119417 | 
| . | 
| Reference:
             | 
[1] Chein O.: Moufang loops of small order.Memoirs of the American Mathematical Society, Volume 13, Issue 1, Number 197 (1978). Zbl 0378.20053, MR 0466391 | 
| Reference:
             | 
[2] Chein O., Pflugfelder H.O., Smith J.D.H.: Quasigroups and Loops: Theory and Applications.Sigma Series in Pure Mathematics 8, Heldermann Verlag, Berlin, 1990. Zbl 0719.20036, MR 1125806 | 
| Reference:
             | 
[3] Chein O., Pflugfelder H.O.: The smallest Moufang loop.Arch. Math. 22 (1971), 573-576. Zbl 0241.20061, MR 0297914 | 
| Reference:
             | 
[4] Drápal A., Vojtěchovský P.: Moufang loops that share associator and three quarters of their multiplication tables.submitted. | 
| Reference:
             | 
[5] Goodaire E.G., May S., Raman M.: The Moufang Loops of Order less than $64$.Nova Science Publishers, 1999. Zbl 0964.20043, MR 1689624 | 
| Reference:
             | 
[6] Pflugfelder H.O.: Quasigroups and Loops: Introduction.Sigma Series in Pure Mathematics 7, Heldermann Verlag, Berlin, 1990. Zbl 0715.20043, MR 1125767 | 
| Reference:
             | 
[7] Vojtěchovský P.: The smallest Moufang loop revisited.to appear in Results Math. MR 2011917 | 
| Reference:
             | 
[8] Vojtěchovský P.: Connections between codes, groups and loops.Ph.D. Thesis, Charles Univesity, 2003. | 
| . |