Previous |  Up |  Next

Article

Title: Characterizing polyhedrons and manifolds (English)
Author: Barkhudaryan, Arthur
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 44
Issue: 4
Year: 2003
Pages: 711-725
.
Category: math
.
Summary: In [5], W. Taylor shows that each particular compact polyhedron can be characterized in the class of all metrizable spaces containing an arc by means of first order properties of its clone of continuous operations. We will show that such a characterization is possible in the class of compact spaces and in the class of Hausdorff spaces containing an arc. Moreover, our characterization uses only the first order properties of the monoid of self-maps. Also, the possibility of characterizing the closed unit interval of the real line and some related objects in the category of partially ordered sets and monotonous maps will be illustrated. (English)
Keyword: monoids of continuous maps
Keyword: clones
MSC: 06F30
MSC: 08A68
MSC: 54C05
MSC: 54H15
MSC: 54H99
idZBL: Zbl 1097.54041
idMR: MR2062888
.
Date available: 2009-01-08T19:32:28Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119426
.
Reference: [1] Barkhudaryan A.: On a characterization of the unit interval in terms of clones.Comment. Math. Univ. Carolinae 40 (1999), 1 153-164. Zbl 1060.54512, MR 1715208
Reference: [2] Kuratowski K.: Topologie I, II.Monogr. Mat., Warsaw, 1950.
Reference: [3] Magill K.D., Jr., Subbiah S.: Green's relations for regular elements of semigroups of endomorphisms.Canad. J. Math. 26 (1974), 6 1484-1497. Zbl 0316.20041, MR 0374309
Reference: [4] Sichler J., Trnková V.: On elementary equivalence and isomorphism of clone segments.Period. Math. Hungar. 32 (1-2) (1996), 113-128. MR 1407914
Reference: [5] Taylor W.: The Clone of a Topological Space.Res. Exp. Math. 13, Heldermann Verlag, 1986. Zbl 0615.54013, MR 0879120
Reference: [6] Trnková V.: Semirigid spaces.Trans. Amer. Math. Soc. 343 (1994), 1 305-325. MR 1219734
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_44-2003-4_16.pdf 239.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo