Previous |  Up |  Next

Article

Title: Topological characterization of the small cardinal $i$ (English)
Author: Franco-Filho, Antonio de Padua
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 44
Issue: 4
Year: 2003
Pages: 745-750
.
Category: math
.
Summary: We show that the small cardinal number $i = \min \{\vert \Cal A \vert : \Cal A$ is a maximal independent family\} has the following topological characterization: $i = \min \{\kappa \leq c: \{0,1\}^{\kappa}$ has a dense irresolvable countable subspace\}, where $\{0,1\}^{\kappa}$ denotes the Cantor cube of weight $\kappa$. As a consequence of this result, we have that the Cantor cube of weight $c$ has a dense countable submaximal subspace, if we assume (ZFC plus $i=c$), or if we work in the Bell-Kunen model, where $i = {\aleph_{1}}$ and $c = {\aleph_{\omega_1}}$. (English)
Keyword: independent family
Keyword: irresolvable
Keyword: submaximal
MSC: 54A05
MSC: 54A25
MSC: 54A35
MSC: 54B05
MSC: 54B10
MSC: 54C25
idZBL: Zbl 1098.54003
idMR: MR2062891
.
Date available: 2009-01-08T19:32:43Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119429
.
Reference: [ASTTW] Alas O.T., Sanchis M., Tkačenko M.G., Tkachuk V.V., Wilson R.G.: Irresolvable and submaximal spaces: homogeneity vs ${\sigma}$-discreteness and new ZFC examples.Topology Appl. 107 (2000), 259-278. MR 1779814
Reference: [BK] Bell M., Kunen K.: On the Pi-character of ultrafilters.C.R. Math. Rep. Acad. Sci. Canada 3 (1981), 351-356. Zbl 0475.54001, MR 0642449
Reference: [Ma] Malykhin V.I.: Irresolvable countable spaces of weight less than $\frak c$.Comment. Math. Univ. Carolinae 40.1 (1999), 181-185. Zbl 1060.54500, MR 1715211
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_44-2003-4_19.pdf 193.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo