Previous |  Up |  Next


critical points; noncoercive and nondifferentiable functionals; bifurcation \break points
In this paper we study the existence of critical points for noncoercive functionals, whose principal part has a degenerate coerciveness. A bifurcation result at zero for the associated differential operator is established.
[1] Arcoya D., Boccardo L., Orsina L.: Existence of critical points for some noncoercive functionals. Ann. Inst. H. Poincaré Anal. Non Linéaire 18 4 (2001), 437-457. MR 1841128 | Zbl 1035.49007
[2] Boccardo L., Orsina L.: Existence and regularity of minima for integral functionals noncoercive in the energy space. Ann. Scuola. Norm. Sup. Pisa 25 (1997), 95-130. MR 1655511 | Zbl 1015.49014
[3] Boccardo L., Dall'Aglio A., Orsina L.: Existence and regularity results for some elliptic equation with degenerate coercivity. Special issue in honor of Calogero Vinti. Atti Sem. Mat. Fis. Univ. Modena 46 (1998), suppl., 51-81. MR 1645710
[4] De Giorgi E.: Teoremi di semicontinuitá nel calcolo delle variazioni. Lecture Notes, Istituto Nazionale di Alta matematica, Roma, 1968.
[5] Ladyzenskaja O.A., Uralceva N.N.: Equations aux dérivées partielles de type elliptique. Dunod, Paris, 1968. MR 0239273
[6] Ricceri B.: A general variational principle and some of its applications. J. Comput. Appl. Math. 113 (2000), 401-410. MR 1735837 | Zbl 0946.49001
Partner of
EuDML logo