Previous |  Up |  Next

Article

Title: On free modes (English)
Author: Stronkowski, Michał Marek
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 47
Issue: 4
Year: 2006
Pages: 561-568
.
Category: math
.
Summary: We prove a theorem describing the equational theory of all modes of a fixed type. We use this result to show that a free mode with at least one basic operation of arity at least three, over a set of cardinality at least two, does not satisfy identities selected by 'A. Szendrei in {\it Identities satisfied by convex linear forms\/}, Algebra Universalis {\bf 12} (1981), 103--122, that hold in any subreduct of a semimodule over a commutative semiring. This gives a negative answer to the question raised by A. Romanowska: Is it true that each mode is a subreduct of some semimodule over a commutative semiring? (English)
Keyword: modes
Keyword: Szendrei modes
Keyword: subreducts
Keyword: semimodules
Keyword: equational theory
MSC: 03C05
MSC: 03F07
MSC: 08B05
MSC: 08B20
idZBL: Zbl 1150.08304
idMR: MR2337411
.
Date available: 2009-05-05T16:59:36Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119617
.
Reference: [1] Burris S., Sankappanavar H.P.: A Course in Universal Algebra.Graduate Texts in Mathematics 78, Springer, New York-Berlin, 1981; http://www.math.uwaterloo.ca/$^\sim $snburris/htdocs/ualg.html. Zbl 0478.08001, MR 0648287
Reference: [2] Dojer N.: Clones of modes.Contributions to General Algebra 16 (2005), 75-84. Zbl 1089.08004, MR 2166947
Reference: [3] Golan J.S.: The Theory of Semirings with Applications in Mathematics and Theoretical Computer Science.Longman Scientific & Technical, Harlow, 1992. Zbl 0780.16036, MR 1163371
Reference: [4] Ježek J., Kepka T.: Medial Groupoids.Rozpravy ČSAV 93/2, Academia, Praha, 1983. MR 0734873
Reference: [5] Ježek J., Kepka T.: Linear equational theories and semimodule representations.Internat. J. Algebra Comput. 8 (1998), 599-615. MR 1675018
Reference: [6] Romanowska A.B.: Semi-affine modes and modals.Sci. Math. Jpn. 61 (2005), 159-194. Zbl 1067.08001, MR 2111551
Reference: [7] Romanowska A.B., Smith J.D.H.: Modes.World Scientific, Singapore, 2002. Zbl 1060.08009, MR 1932199
Reference: [8] Szendrei À.: Identities satisfied by convex linear forms.Algebra Universalis 12 (1981), 103-122. Zbl 0458.08006, MR 0608653
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_47-2006-4_2.pdf 211.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo