Previous |  Up |  Next

Article

Title: Weak orderability of some spaces which admit a weak selection (English)
Author: Costantini, Camillo
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 47
Issue: 4
Year: 2006
Pages: 609-615
.
Category: math
.
Summary: We show that if a Hausdorff topological space $X$ satisfies one of the following properties: \noindent a) $X$ has a countable, discrete dense subset and $X^2$ is hereditarily collectionwise Hausdorff; \noindent b) $X$ has a discrete dense subset and admits a countable base; \noindent then the existence of a (continuous) weak selection on $X$ implies weak orderability. As a special case of either item a) or b), we obtain the result for every separable metrizable space with a discrete dense subset. (English)
Keyword: weak (continuous) selection
Keyword: weak orderability
Keyword: Vietoris topology
Keyword: dense countable subset
Keyword: isolated point
Keyword: countable base
Keyword: collectionwise Hausdorff space
MSC: 54C65
MSC: 54D15
MSC: 54D70
MSC: 54E35
MSC: 54F05
idZBL: Zbl 1150.54020
idMR: MR2337415
.
Date available: 2009-05-05T16:59:56Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119621
.
Reference: [1] Artico G., Marconi U., Pelant J., Rotter L., Tkachenko M.: Selections and suborderability.Fund. Math. 175 1-33 (2002). Zbl 1019.54014, MR 1971236
Reference: [2] Engelking R.: General Topology.Heldermann Verlag, Berlin, revised and completed edition, 1989. Zbl 0684.54001, MR 1039321
Reference: [3] García-Ferreira S., Gutev V., Nogura T., Sanchis M., Tomita A.: Extreme selections for hyperspaces of topological spaces.Topology Appl. 122 157-181 (2002). Zbl 1034.54007, MR 1919299
Reference: [4] García-Ferreira S., Sanchis M.: Weak selections and pseudocompactness.Proc. Amer. Math. Soc. 132 1823-1825 (2004). Zbl 1048.54012, MR 2051146
Reference: [5] Gutev V., Nogura T.: A topology generated by selections.Topology Appl. 153 (2005), 900-911. Zbl 1089.54005, MR 2203899
Reference: [6] Michael E.: Topologies on spaces of subsets.Trans. Amer. Math. Soc. 71 152-182 (1951). Zbl 0043.37902, MR 0042109
Reference: [7] van Mill J., Wattel E.: Selections and orderability.Proc. Amer. Math. Soc. 83 601-605 (1981). Zbl 0473.54010, MR 0627702
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_47-2006-4_6.pdf 200.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo